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Chapter 1

Intro to CFD

Strengths of Computational/Experimental/Analytic Fluid
Dynamics

1.1 Modeling

Consider the flow inside a commercial tire incinerator (metshown in class).
Ground-up tires are dumped in and burned. Gases pass bykbeat exchang-
ers to boil and superheat water for power generation. Becalithe combustion
conditions, there is a significant amount of nitrogen oxid@Sy) in the flue gases,
which is environmentally unacceptable. A company in lli;mgNalco Fueltech)
makes a living by sellingl Oy reduction systems for incinerators like this one. They
need an accurate CFD model that can be easily applied toetyafiincinerators
rather quickly so that they can desifOy reduction systems. In particular, they
must predict temperature, velocity, aN@Dy concentration both with and without
their emission reduction system for several operating itimms. They must do this
quickly (a couple of weeks at most).
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Key features of the physics: Governing equations that telnost of these effects:

Global continuity:

ap _
5t TH P =%
Momentum:
d(pu) r_z
T_i_m. (pU@U-i—PI —Tij> = Snom
Energy:
JE J 7
—¢ + 0 (UE+P) = a—?—f—D'(kDT)‘f’Qrad‘f’D'(Tij -0)

Species continuity:

opi o
WﬂLD'(PlU) =S
Turbulence closure model

Droplet transport and evaporation model.

Total: Perhaps twenty PDE’s with a wide range of time scdtes(very fast chem-
ical reactions to viscous diffusion and convection scales)

Including all of this physical detail in a computer model wibmake for a tremen-
dously complicated and probably tremendously slow progrEime essence of mod-
eling is to balance physical fidelity against human and cdempesources available.
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Generally, we use either the simplest model that gives anasdde answer or the
most complex model that can be programmed and run with &laitasources.

Assume for this problem that:
e Combustion can be modeled as a distributed heat source
e Sprays have a negligible mass, momentum, and energy effeébedlow

e Chemistry ofNOy reduction can be de-coupled (solved separasepgsteri-
ori)

¢ Neglect radiative heat transfer

This reduces the mathematical description of the problem to
Global continuity:

ap
ﬁ—i—D(pU)—O
Momentum:
0(pU) -
T+ 0 (pucu+PI-7j) =0
Energy:

J0E B . 0Q
H—i—D(U(E#—P))—D~(kDT)+D-(T.J u) + T

Species continuity:
Removed from main model

Turbulence closure model
Droplet transport and evaporation model.
Chemical reactions in the Oy reduction process.

Total: Seven PDE’s (with 2-eq turbulence model) plus a depted set of PDE’s
to be solved separately for the droplets, etc, once vedscdnd temperatures are
known.

Modelingis the process of separating important from unimportansjuay effects
in the physics of the problem to arrive at a mathematical rhdas is not too
complex.
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1.2 Discretization

Modeling gives a system of PDE’s to be solved. Only very sacein we obtain
an exact solution to these PDE’s. Before we can compute éi@o]uve first must
decidewherewe want to solve the equations. This requires us to genernaiesh

containing a finite number of locations where we will solve #DE’s. Mesh gen-
eration is a topic that we will discuss in Mech 511.

Once we have a mesh, we need to develop a representation BDi&Es on this
mesh, including a time-evolution scheme. There are threia families of tech-
niques for this:

Finite difference. Solution is represented by point values at mesh points.dgepl
each differential term in the PDE by a corresponding finiteedence approx-
imation. (See Figure 1.1)

i-2 i-1 i i+1 i+2

|~ dx—=

Figure 1.1: Schematic representation of finite differerg@raximation to a contin-
uous solution.

The original approach for CFD.

Easy to get high-order discretizations (use high-ordetfidifferences).

Doesn’t conserve mass, momentum, and energy exactly.

Impractical for unstructured meshes.

Finite volume. Solution is represented by control volume averages. Whiee t
PDE'’s in volume integral form. Discretization based on ea#ibn of vol-
ume integral over small control volumes. (See Figure 1.2)

e Conserves mass, momentum, and energy exactly.
e Applicable to any mesh topology w/ appropriate control voas.
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i-2 i-1 i i+1 i+2

|~ dx—1

Figure 1.2: Schematic representation of finite volume axipration to a continu-
ous solution.

i-2 i-1 i i+1 i+2

~— dx—

Figure 1.3: Schematic representation of finite elementappration to a continu-
ous solution.

e Not too hard to get high-order discretizations (locally stoact high-
order polynomial representation of solution).

Finite element. Solution is represented by lochhsis functions Multiply by a
test functiorand integrate. Discretization based on evaluating integvih
given test and basis functions. (See Figure 1.3)

e Applicable to any mesh topology w/ appropriate test anddfasictions.
¢ Lots of theoretical results showing convergence and styabil method.

¢ Not too hard to get high-order discretizations (high-orosis and test
functions).

e Conservation of mass, momentum, and energy is difficultpbasible.

1.3 Accuracy and Stability

The finite representation of the PDE is not exact; saliseretization erroris in-
troduced regardless of how precisely we solve the dise@&ruations. Before we
bother coding up a scheme, we want to analyze its accuratyaswée’ll know what
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we’re getting. The analysis gives an idea about how muclerdiffce there will be
between our discrete solution (on a computer with infiniecmion) and the exact
solution to the PDE. We also find out how the discretizationrewill change as we
add mesh points.

Also, for unsteady problems, we analyze the time-evolusicdmeme to determine
its stability. That is, we determine whether errors in thiitson will grow expo-
nentially in time or remain bounded.

1.4 Validation

Then we write a program to solve the discrete problem. We dentp It doesn’t
compile the first few times. Finally it does. We run it. It dnas. Finally it runs and
gives an answer. Should we believe this answer? No. Abdplnte. The output
could be literally anything, from Egyptian hieroglyphicsthe Martian alphabet;
these are about as likely as getting the right solution tisetfly, in my experience.
No CFD program should be considered correct until it has bleeroughly tested
and debugged.

There are two interrelated parts to fixing a broken CFD pnogrealidationtells
us whether the solutions we get for a series of simple testscai® correcDebug-
gingis the process of identifyingshy a program failed a test case and fixing it. A
validation plan should begin with ridiculously simple teases and work up to test
cases that are as near as possible in complexity to the pndblbe solved.

e Begin by testing code at the component level. While it's fjmleso debug
1000 lines of code (about the limit of program size for thiarse, typically)
in one big piece, it's much easier to work with much smalleurdts. Basi-
cally, if you can define a task that a chunk of code is suppasdd,tyou can
define a test that confirms that it was done correctly. Writhegtestfirst is
not necessarily a bad idea — then you’ll know for sure wheringalone.

e When testing the entire code by solving flow problems,

— Each test case should have a known solution, whether atadyperi-
mental, or computed by a previously-validated program.

— Each test case should ideally test a single new part of theighypr a
single new interaction between already validated partss approach
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minimizes the number of places one must look for errors wherpto-
gram gives an incorrect result for a test case; this more dffants the
time consumed in running more test cases. While it is nearfyossi-
ble to test only one thing with each case, the closer we cordewising
such a plan, the easier it will be to validate and debug ougraira.

— Table 1.1 gives a partial listing of test problems worth ¢desng for
the tire incinerator problem.

Case| Physics Change in
physics

1 | Inviscid terms only, no heat addition, no flow ini-
tial condition in a closed rectangular box (ana-
lytic solution)
2 | Inviscid terms only, no heat addition, no flowDifferent
initial condition with wall, inflow, and outflow boundary
boundary conditions (analytic solution) conditions
3 | Inviscid terms only, no heat addition, uniforpiNon-zero
flow in a straight rectangular duct (analytic sovelocity
lution)
4 | Inviscid terms only, no heat addition, accelerpi/elocity  in-
ing flow in a straight rectangular duct (analyticreasing to
solution) steady-state

n-3 | Turbulent flow without heat addition in a straighTurbulence
duct (experimental data)
n-2 | Turbulent flow with heat addition in a straightHeat addition
duct (experimental data)
n-1 | Turbulent flow without heat addition in a ductFlow around

with abrupt turns (experimental data) bends
n Turbulent flow with heat addition in tire inciner-Combines n-2
ator and n-1

Table 1.1: Partial validation plan for the tire incinerapooblem.

Technically, the listing of test cases for the tire incitergroblem mixes validation
cases and verification cases. The difference between tiveseategories is that
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verificationensures that your program correctly implements the phykaisyou
intended it to, whilevalidationdemonstrates that your physical model comes close
enough to reality for the problem of interest.

1.5 Efficiency

Now the program works, and we believe that the physics it kEites is adequate
for our real world problem. Is the code efficient enough to sahle? Let's say that
a run for this tire incinerator takes 20 CPU hours on the &steachine available.
For one run, that would be fine. But in the design context, weeha check a
number of different operating conditions, which startsebexpensive. And for the
company to stay in business, we have to design an emissiootied system for
one of these things every week or so. So in this case, 20 henitggpod enough.
We have to go back and do one of several things:

e Simplify the physical model even more
o Simplify the discretization
e Improve the technique we use to solve the discretized eanpsmti

e Buy a faster computer

Whatever we do, we have to sure that the final solution isatdurate enough.

1.6 Convergence

Finally, for any problem, we need to be sure that we have aatetyjuresolved all
of the important physical features of the flow. “Importanépgnds on the physical
guantities we're after. If all we care aboutN€y mass fraction at the stack outflow,
then we probably do not need to be concerned with resolviegahgth scales
of turbulent eddies. To know this, we need either enough reaapee to know in
advance how fine a mesh to use or to performesh refinement studin a mesh
refinement study, we compute the solution on a series of pssgrely finer meshes
until the physical quantity in which we are interested stopesnging. This amounts
to an empirical measurement of when discretization erracceptably small.



Chapter 2

Modeling Based on the Navier-Stokes
Equations

Most problems in computational fluid dynamics and compateti heat transfer
hinge on solving the Navier-Stokes equations, which descviscous fluid flow,
often in conjunction with auxiliary equations describirtger physical phenomena,
like turbulence, combustion, transport of chemical spea@éc. Before considering
such complicated cases, we will begin by examining the Nie®iekes equations
in detail, including non-dimensionalizing the basic equat and deriving some
simple model problems based on that non-dimensional form.

2.1 Non-dimensionalization of the Navier-Stokes equa-
tions

First, we write the Navier-Stokes equations (includinge¢hergy equation) in two
dimensions for the case of constant coefficients:

Ju ov

xtay = O 2.1)
@4—0—[]2-%@ = —1£+v<a—2u+a—2u) (2.2)
ot = 9x dy p 90X ox2 = gy? '
a_v+@/+a_v2 = —1£+v<@+@) (2.3)
ot dx  ay p dy ox2 = 9y? '

9
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(2.4)

oT 0T T k <02T aZT)

ot Yax TVay T pe, \ o Tay

Y (2(20) o (V) (9 Y
Cp ox oy ox oy

Note that the momentum equations have been written in ceaisen-law form

by using the continuity equation. The same thing could ha@nbdone for the
energy equation, but this equation is generally solvedra¢glg, with the velocity
field already known; this makes it much less important to hiéwe equation in
conservation law form.

To non-dimensionalize Equations 2.1-2.4, we need referealues for length, ve-
locity, pressure, and temperature (density is fixed, so wet sheed a reference
value for density). Suppose that we choose to non-dimeakanlength byL,
velocity by uyes, pressure bpurzef, and temperature by;es. Basically, we just as-
sume that we can find some appropriate reference valuggs and Tt for what-
ever problem we're solving and that the pressure changdsifidw can be non-
dimensionalized appropriately by the dynamic pressurecai®d withuer. If we
do this, we can write the dimensional variables in terms af-dnensional vari-

ables (with*) and reference values:
L
t = t*—
Uref
= XL
= Yy'L
U" Uref
= V'Uref
- I:)*purzef
T = T*Tref

U < © < X
I

Substituting these into the continuity equation:
(9 (U* Uref) (9 (V* Uref>

d(x'L) ' a(xL) 0
o our vt

Uref [ OU* .

(5 o) O
or

ou ov
ox: = oy*
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Substituting into the x-momentum equation:

0 (U*Uref) + o <U urEf> + 4 (u v uref) 1M+v (az (U*Uref) | 02 (U*uref>>

0 (t'L/uer) 9 (x°L) o(y'L)  p da(xL) 0 (x?L2) +c9(y*2L2)

Dividing all terms byuZ/L,

du* N au*’ N ouv 9P N v [d%u* N 22u*
ot = axt  dy*  Ox* LU \ dx?  dy*”°

where of coursel_—ref = R}e Not surprisingly, a similar result holds for the y-

momentum equatlon

o ouv ov_ P v (A PV
ot = Ox*  dyr Oy Luet \dx® 9y
If we substitute the non-dimensional versions of the vdeisinto the energy equa-
tion, we get:

d (T*Tref) % d (T*Tref) d (T*Tref)

Ot L uer) - Ta0eL) Y oL

K Tiet (aZT* N a2T*)
pcp L2 \ ox* gy
v U2

ou* V" ov-  out\?
ref
Top L2 <2<0x*) +2(dw) +<dx*+dy*) )

Dividing by urefTref/L, We get:
oT* oT* oT* k (02T* 02T*)

o TU e TV dy"  PpCplurer \ ox? * oy

VUref ou* ov
T GpTetl (2 <ax*> 2 <ay*)

N (0v* N é‘u*)
ox*  ody*

What are the dimensionless parameters here?

PLUefCp  pLUref HCp Re. Pr— inertia dissipation
k  u ko ~ viscosityconduction
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and
CplrefL _ LUref CpTref Re. 1 inertia  enthalpy

Uref V v w2,  Ec viscositykinetic energy

Summarizing the non-dimensional equations,

g;%—% . (2.5)
6u*+6u*2+0u*v* _ _aP*+i<@+ﬂ) (2.6)
ot | axt | Ay ox* ' Re\ gx? = gy’ '
LA O L (P ) -
ot ax+ | dy* dy*  Re\odx* ody?

oT* oT* . 0T* 1 [0°T* 9°T*
v VTV T ke Pr<ax*2 * ay*z) (8)

Ec(, (ou 2+2 v 2+ ov- , our 2
Re ox* oy* ox*  oy*
Note the extreme similarity in form between Equations 2.4-eé the one hand and

Equations 2.5-2.8. From now on, we’ll use the non-dimeraitorm without the
* superscripts.

Finally, it's worth noting that the non-dimensional pardaere depend only on fluid
properties (which we are assuming to be fixed) and on theamdervalues:

PLUret _ L Uret

Re =
u v
HCp
Pr = —
k
2
Ec — Urer
Cp Tref

We can deduce several things from the way in which these moersional coeffi-
cients appear in the non-dimensional equations.

e The viscous terms in the momentum equations will be impotatess the
Reynolds number is extremely large, and these terms willidata the mo-
mentum equations in the limit of low Reynolds number (creggdiow). The
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heat conduction and viscous dissipation terms in the eneggyation also
have Reynolds number scaling, with the same consequences.

e The heat conduction term has an additional dependence d?raineltl num-
ber, which is a fluid property that measures whether momeituneat dif-
fuses more rapidly in the fluid.

e The viscous dissipation has an additional dependence dadkert number,
which is a measure of the relative importance of internafgghand kinetic
energy in the flow.

2.2 Derivation of model problems

Although the Navier-Stokes equations are useful for sglyphysical problems,
there are too many complexities involved in their solutionthem to be a good
starting point for study. However, we can derive severabgedically useful model
problems from the Navier-Stokes equations that can be asédgtrate particular
techniques in CFD.

Poisson’s Equation

Begin with the two-dimensional incompressible energy éiqnaincluding a source
term:

oT  dT  dT 1 ., Ecf_ [(du\> _/ov\° [dv du\?)
W—I_UW—I_V(?_)/_RE'PYD T+§a<2<&> +2<0_y> +<d_x+0_y> +Q

Assume steady-state and zero velocity:

1 > .
0T = —
Re-Pr Q
92T 92T :
—+—= = —RePrQ=
dx2+dy2 ePrQ=S

This is the familiar Poisson equation, which describes (aather things) steady
heat conduction with a heat source. This is an elliptic PD&t ts, Poisson’s equa-
tion poses a pure boundary value problem, with temperatagehere coupled to
temperature everywhere else.
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Heat equation

Starting again with the incompressible energy equatiowdimensions, and this
time assume zero velocity and no source term,

T 1 62T+02T
ot  RePr\odx2 gy?

N ox2 ~ 0y?

This is thetransient heat conduction equationheat equationThis is a parabolic
PDE, so the heat equation poses an initial-boundary vahtd@dgem. The solution at
(x,t) depends on the solution at alhat that time.

Wave equation

Begin yet again with the incompressible energy equatioth ggsume zero viscosity
and thermal conductivity. Also, neglect the source termernive get:

If we know the velocity, then this is a hyperbolic PDE for tleenperature T. This
is the wave equation, which is an initial-value problem. &oe dimension, we get

oT T

ﬁ‘l‘UW—O

This is the linear convection equation in one dimensionspnoblem has a general
solution of the form
E(x,ut) = f(x—ut)

so solutions travel unchanged at constant speed.

For what other bits of the physics of the Navier-Stokes aquatis this a good
model? That is, what other flow quantities are carried aloitl the flow?
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Space Discretization of PDE’s

Suppose we have a general conservation law (with source tértime form'

ou JF 0G 0JH

ot + ax+ ay+ 57 =S (3.1)
Before we can compute the solution of this problem, we mustite the PDE into
a system of algebraic equations relating the solution atioreslevel to the solution
at the next time level. The first step in this process is sp@atization, which
will convert the PDE into a system of coupled ODE’s descughiine variation of
solution unknowns with time. Next, these ODE'’s are diseeatiin time to produce
a set of algebraic equations.

3.1 Overview

We begin with a comparison among finite difference, finiteredat, and finite vol-
ume methodologies. These methods can all be applied to thei?Bg. 3.1, but
for simplicity and concreteness, we will consider the omaahsional advection-
diffusion equation:

0T ouT  0°T

ot T ax ~ Yo

This form is much more general than it looks. In particulaisia simple matter to write the
NavierStokes equations in this form.

15
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whereu anda are known constants. We consider the spatial dorfai), divided
into N equal intervals, withl (0,t) =1 and‘;—l (1,t) = 0. Initial conditions need
not concern us here.

3.1.1 The Finite Difference Method

In the finite difference methods, we compute the solutionoatts in the domain.

In this case, we will havé\ + 1 points located at = §;, i = 0..N. We will refer

to the solution ak; asT;. To approximate the spatial derivatives, we will use finite
differences, just as in the classical definition of the dexe. Because there is
more than one way to approximate a derivative at a point, ib&etization is not
unique; one possibility is to use

oT Tr1—Tia

Q

9x 20X
0°T  Tiy1—2Ti+Tia
o2 AX2

Using Taylor series expansions, it is easy to verify thaséhapproximations are
accurate to withirO (Ax?); that is, that the difference betweenand~ for these
approximations decreases with the square of the mesh gpdwithis case, we can
write a discrete approximation to the PDE as:

dTi = Tiq1—T1 Tit1—2Ti+Ti1
! =a
dt +u 2A\X AX2

again to withinO (Ax?). This leaves usl — 1 equations (for points 1 through— 1)
written in terms ofN + 1 unknowns {p andTy are the other two). Fortunately, we
have two boundary conditions, which can again be writtendpyacing derivatives
with approximations:

To = 1
Tn—Tn-1
AX

The former happens to be exact (no approximation was retjuinhile the latter
turns out to be first-order accurate.
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3.1.2 The Finite Element Method

In the finite element method, the solution is computed at hedaes (here we
use the same points as in the finite difference example), r@edpolated between
nodes by using basis functions so that a continuous refegs®anof the solution is
available. That is, the global solution is written as

T(xt)= 'ibi (X) T (3.2)

where thdy; arebasis functionsand theT; are the nodal solution values (which vary
in time, but this is suppressed for notational clarity). iBdanctions are always
defined to have a value of 1 at exactly one nodal point, and aeatl others; this
ensures that the interpolation matches the nodal valubs abides. Basis functions
are also defined to hawvampact supportmeaning that they are uniformly zero
outside of a small region near “their” node. For our presamppses, we will
consider the piecewise-linear tent-shaped basis fungiian by:

14+7%  X1<X<X
bi(x) =9 1-&% X <x<X1 (3.3)
0 elsewhere

This basis function must be modified at the ends of the donodre tone sided, so
that the basis function does not overlap the end of the damain

Finite volume discretization proceeds by multiplying theEBPby a test function
w; (X); we will consider the Galerkin finite element discretizatian which the
test and basis functions are identical. This weighted PDiategrated over the
domain, with the solution represented by Equation. 3.2. eé@#pg this for each
basis function results iN 4+ 1 equations for the nodal solution values.

In this case, for an interior node, we write:

N dT: N db: N de.
Wi b-—’) +Uuw (T—‘) = aw (T—J)
'j;<‘dt ]; Vdx 'J; Fdx2

Note that, even for linear basis functions, the second d&vir on the right-hand
side is non-zero at = X (where it is infinite). Also, for the given basis and test
functions, the only non-zero terms occur foe i — 1,i,i + 1, which reduces both
analytic and computational effort enormously. Now we inédg over the domain,
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which reduces to integration over the supponiaf

o

)
(i+1)Ax :

/(i—l)Ax i

Wi
J

Wi
j

i+1

2

i+1

2

bj dT +u
'dt va:
dTj
(b, dt)+u\MJ:

i+1 dbj

(T' dx
dby

i+1
3 (v

2

)
)

dx

dx

1
/ aw,
0

]:

(i+1)Ax
/(i—l)Ax

i+1

2

d2b;
dx2

(n

i+1

aw 3

j=1—

) o

d2b;
(TJ dx2

)dx

1 (i+1)Ax

uw S (T]
j=1-1

Let's look at one term at a time. First, the advection term:
i+1 db:
(e
j=1-1 dx

(i+1)Ax d b
u X = '
/(i—l)Ax " :Z ) J) .
(i—1)Ax

Here we've used integration by parts, and note that the &rst bn the left is zero
for all i (except fori = N, a boundary case which we’ll ignore for now). In the
second term, the derivative of the weight function is:

A (i—1)Ax< x<iAx

:{ A X< X< (i+1)Ax

(18 dyy i1
_/(i_mx uaj:Izl(ijj)dx

dw
dx

and the sum is the solution interpolant:

& 1) (Ti-
2 b= { X)(T-

So that integral gets split into two pieces, thus:

iAX 1
B /(i—l)Ax AX

T+ (R—(—
Ti+1+( —f—l

T-1) (i—DAx< xX<iAx
Tit1) IAX < x < (i4+1)Ax

WSS (Tiby) dx (Tat (5.~ (-1) (Ti—Ti 1)) dx

(H‘l)AX dw i+1
- /(I dx

i—1)Ax (41
_/(i+1)AXu (;i) <T|+1+ ( i+1-— A_> (Ti— T.+1)> dx
[pl ),
L L

| ——

A_Ul( Ti—le+((2' 1) AX . 1)Ax) (Ti—Ti—l)}
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LM [THle-l- ((i +1)AX— M) (Ti —Ti+1>]

AX 2AX
Ti—Ti-1 Ti—Tit1
_ U[—Til— i 2| N i 2|+}
Tia—Tia
= Uu——m———-—
2

The second-last line contains the average values betyygenl) and (i,i —1) in
a recognizable form; this isn’'t surprising, considering wtgrated the solution
times a constant.

For the diffusive term, we’ll once again integrate by parise

(+Dax L s g2p, &/ dby
/(il)Ax o -Z_1<TJW) = [aWIj_z ( dX)

j=I i

(i+1)Ax (HD)AX gy 1+ db ;
—a — X
/(il)AX dx ;4 Z < dX)
Again, except for boundary cases, the first term is zero 1or. ahe second term

has a piecewise constant integrand, with

(i—1)Ax

Z Tl Tipa—Ti

1+1 dbJ I (- 1)Ax < x < iAx
A A< x < (i+1)AX
So that remaining integral becomes:

(+hax gy 1E 7 dhy 1T-Ta  (-1\Tua—T
_a/(i—l)Ax ajzz (Tjd )dx - a [B( Ax +<H) Ax }AX
_ = 2Tt T
AX

Okay, that’s two integrals out of three done. Now for the tidependent term.
Since the node locations and the basis and test functionsoastant, we can pull
the time derivative out of the integral to get:

(i+1)Ax i+1 dT d r+1)Ax i+1
Wi bi—2 | dx= —/ Wi biT;) dx
/(i—l)Ax 'J:Z ( : dt) dt Ji-1)ax |j:|zl( ’ J)
Now we substitute fow; andbj, and it's easy to get to:
d ri+1)Ax i+1 d ridx X

d - 1ax W, j:IZl (bjTj)dX = d - 1ax (AX (i —1)) (Ti_l-f—(Ti —Ti—1) (%(— (i —1))) dx
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P 1 ) B (T (41 5

B d (Tira+4Ti+Tig
= Axa< 5

where the last line reflects not the occurrence of a miradlesimply some tedious
algebra. Combining the results of evaluating these variotegrals, we get the
linear Galerkin finite-element discretization for the achi@n diffusion equation:

oT ouT _ o

ot odx ox2
}d'l'i+1+§ﬂ 1dTia gl T = 2T+ Tig
6 dt 3dt 6 dt 2AX Ax?

Note that we have a set of algebraic equations to solve fairtieederivatives. For
steady-state computations, it's customary to fold thehaftd side terms together
to get simplydT; /dt; this is a specific example of the geneltahped mass matrix
technique. For boundary conditions, we once again apply

To = 1
Tn—Tn-1
INTIN-T

AX

although for unsteady problems, it’'s convenient to difféiete these with respect
to time.

3.1.3 The Finite Volume Method

The finite volume method divides the domain into control woés. In this case,
there areéN control volumes, with control volumieovering the region frori — 1) Ax
to iAx. The quantity we compute in this case will be the control woduaverage of
the solution, which we will refer to &8 = £, ('iAfl)AxT dx We begin by integrating
the equations over a control volume:

oT ouT 0T
ot ox ox2

/ a—de-l—/ du_T —/ adz—de
cvi ot cvi 0x  Jovi Ox2
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Now we apply Gauss’s Theorem to convert the second and thtedrials; in three
dimensions, this is stated as:

/D-lfdvz E.AdA
Q 2Q

whereF is an arbitrary vector and i$ an outward unit normal. Applying Gauss's
theorem in this one-dimensional context, we get:

/ d—de-l—/ aL-rdx—/ a&dx
cvi ot cvi OX  Jovi 0x2

oT oT oT
—AX+ (UT),_ipe — (UT )i = a (—) — (—)
/CVi ot X8 x=(i—1)x 0X ) scink  \ 90X/ s i_1)nx

For fixed control volumes, the derivative can be removed ftbmintegral and

converted to a complete differential. The remaining queastiin the discretiza-

tion represent fluxes across the control volume boundaressensible choices for
computing these fluxes is a key to success with the finite velomthod. In the

case, we will write

Tt
u|+|+1

(UT)x:iAX = 2

JoT _ Ta-T
X ) ink AX

These choices, as we shall see, turn out to be second-oense. If we substitute
these expressions into our control volume averaged PDEgive g

oT oT oT
—dX+ (UT)yine — (UT)ypi = o (—) — (—)
/CVi ot X8 x=(i—1)x 0X ) scink  \ 9%/ s i_1)nx

Axd—ﬁ+u-ﬁ+1_ﬁ_l B a'ﬁ+1—2ﬁ+'ﬁ—1

a2 7 Ax
dTi  Tir1—T1 T1—2Ti+Ti1
— 4u—" = q

dt +u 2AX AX2

Again, we get an interior scheme indistinguishable fromfthige difference and
finite element schemes for this problem. The boundary camdit however, dif-
fer. In this case, if we follow from the flux definitions, we fitldat the boundary
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conditions can be written as:
Ti+To
=1
2
<0T) Tne1— TN
bl — M= N _p
0X ) v NAX AX

This looks like it might be a step backwards (we've introdlibgo new variables,
To andTyn.1), the interior scheme contains these variables as wellinstaince,

Tx:O =

dii T-To T—2Ti+To
——4u =a
dt + 2AX AX2

So in the end, we can choose to think of this as a problemMit2 equations and
N + 2 unknowns.

3.2 Transformation of a PDE into Control Volume
Form

If we integrate Equation 3.1 over a three-dimensional aynlume, we get

/ Vv [ Fave [ Cave [ Pav = [ sav
cv Ot cv 0X cv dy cv 0z cv
ouU oF 0G O0oH
/Cvﬁdv+/cv<ﬁ+ﬁ—y+ﬁ)dv - [, sav
/ Nave [ 0.Eav = [ sav
cv ot cv cv

where the last equation arises by definfg: Fi +Gj + Hk. Using Gauss's theo-
rem, we get

/0—Udv+7{ E.AdA= [ sdv
cv ot a(CV) cv

If we assume that the size and shape of the control volumesid {fcomputationally,
assume that the mesh is not moving), we can simplify a bib&irt

5/ UdV+?{ E.ndA= [ Sdv (3.4)
dt Jev a(CV) cv
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In the finite-volume method, we abandon hope of knowing angthbout the de-
tails of the solution within a control volume and instead teo ourselves with
computingu = \%fch dV. This average value 3ot necessarily the value of the
solution at any fixed point within the control volumecluding its centroid; for-
getting this fact can lead to unfortunate misunderstarsiviten developing finite-
volume algorithmg.

If we also define a mean source term contribut®s & |, SdV, we can write
Equation 3.4 as follows.

du L F-AdA+S (3.5)

dt — V.Jacv

This equation states that the average valuef the solution in the control volume
changes at a rate determined by the net flux of stuff acrosbdbedaries of the
control volumeJ § F - idAand the average rate of production of stuff inside the
control volumeS.

Also, Equation 3.5 suggests that for a general time-vargnogplem, the process of
advancing the solution from one time letek nAt to the next (n+ 1)At) requires
four operations:

1. Evaluation of the flu€ at the surface of the control volume.
2. Integration of the normal flui - fiaround the boundary of the control volume.
3. Evaluation and integration of the source temwver the control volume.

4. Updating the control volume average valiie

3.3 Second-order Accurate Flux for the Poisson Equa-
tion

Poisson’s equation in two dimensions is:
0°T N 0°T
ox2 oy
2Nevertheless, it isn’t hard to show (by expanding in a Tagleries and integrating over the

control volume) thatl is within O(Ax?) of U at the centroid of the control volume. Likewisggan
be evaluated to withi (Ax?) by taking its value aS~ S(U).
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Integrating over control volumes, we have

0°T  0°T
/(:V<W+0—y2)dA - [ sda (3.6)
ot _
/ D-( 9 >dA _ SA (3.7)
Ccv (3_)/
7{ (OT)-fids = SA (3.8)
JCV

The last transformation uses Gauss’s theorem. So the flugigséh’s equation is

=
<‘;—1 %) . The normal component of this flux & on faces perpendicular to

thex-axis and‘j;—; on faces perpendicular to tyeaxis.
Recall that the derivative can be defined as
dx|,, &0 2¢

assuming that the limit exists. This is the well-known cesadiedifference formula.
Note that the difference between the total and partial dévig here is simply that
the partial derivative carries along a non-varying secowi@pendent variable:

, (3.9)

oT

ox

PN 2¢€

: (3.10)
Xo

We can use this to calculate the flux we need, because we kradwfdin a suffi-
ciently fine mesh, we will get the correct derivative. Whife very comforting to

know this, it would be even better if we knew how quickly theoeiin the approxi-
mation approaches zero.

To determine this, expand each term on the right-hand sideqoftion 3.9 in a
Taylor series expansion about

dT| & d°T|  &dT
Tote) = To)+e | +5 42| to gl T
dx|,, 2 d@[, 6 de |
dT g2 d’T 3 d3T
To—2) = T00) e | +5 ge| ~6ga| *
dx|,, 2 dx2 v © dx3 %o
Combining these,
T €)—-T(X—¢) dT| & dT
(X0+€)-T(x—¢ _dT +E 50 1o(eY (3.11)
2¢ dXXO 6 dx %o
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Another way to write this is to us&ylor tables Basically, this approach is just a
convenient way to avoid writing out all of every term eachdigou expand some-
thing in a Taylor series. Each column of the Taylor table espnts one term in
the Taylor series expansion, and each row represents aesskpn that is being ex-
panded. The entries in the table are coefficients. Here’prégous example done
using a Taylor table.

2 3
To) | %l | %% | %%

X Xg ox Xq X XQ
T(xo+e) 1 1 £ &
2€ 2¢€ 2 4 12
_Tx-¢) _1 1 _£ &
2¢ 2¢ 2 4 12
T(X+€)—T(X%—¢) €2
o 0 1 0 s

Thetruncation errorin a difference approximatioD of a differential operatob is
defined to bd — D.2 An approximation is said to Bd"-order accuratef and only
if the leading-order term in the truncation errodgeX).

For our example, the truncation error—“{gs%} +0 (54). This approximation is

therefore second-order accurate, and the error in the =ippation will fall by a
factor of four each time is reduced by a factor of two.

Returning to our example of Poisson’s equation, Equatidf Bnplies that we can
write

T o
and _ _

oT Tijra—Tij

— =W W o(ay?

9Ylij+1 By (&)

But can we really justify the use df1 j rather than a pointwise value dfevalu-
ated at the center of control volunfie+- 1, j)? Yes, in fact we can, so long as we're
only looking at first- or second-order accuracy; it's notcher show that the differ-
ence between the control volume average and the local vathe aontrol volume
centroid for a smooth function and a structured mesh is skoader.

3You may also see this definition with the sign reversed; tiferdince is largely philosophical.
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3.4 Flux Integrals

Equation 3.5 requires us to evaluate the integral of the abflux around each
control volume. That is, we need to compyje,, F - fidl. For the control volume
of Figure 3.1, we can write this as

n
i-1/2,j+1/2 u i+1/2,j+1/2
F
F By
n | - n

X

/F

n i+1/2,-1/2

i-1/2,j-1/2

Figure 3.1: Flux integration around a finite volume.

ﬁCVF.ﬁdI = Ry Mg Ay +R e X
—Hfi n AY'HE} 1-f s 1 AX

B (FXH%J a FX*%A’) By -+ <Fy:i,i+% B Fy:ik%) Ax

Returning once again to our Poisson example, we have to demraier accuracy

I
Xit+3,j AX
-ﬁvj_-ﬁfl]
Y~
Xij+z Ay
ToT,
F — |7J IvJ 1

Xi,j—3 Ay
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~ — - = Ay - — AX
. Adl = (T = 2T+ Tion) o+ (Tijea - 2Tij+Tij1) A
Substituting this into Equation 3.8 and dividing By= AxAy, we get the canonical
finite-volume discretization of Poisson’s equation.
T —2Tj+Tinj | Tjsa—2Tj+Tja_ o
: ’ : : ’ 2 = A2
N2 + Ay S (3.12)

It is easy to show by Taylor analysis that the left-hand sitiEguation 3.12 is a
second-order accurate approximation to the Laplacian affi, j.

3.5 Problems

1. Show that, for a smooth function, the difference betwgandT; is O (sz).
(Hint: expandT in a Taylor series aboxt= x;.

2. Show that

02T 02T Tiinj—2Tj+Tonj Tijer— 2T +Tij-
( ) _ i+1,) i] i 17]_|_ i,j+1 1] i] 1+O(Ax2,Ay2)

2 ey A2 Y

3. High-order accurate flux evaluation for Poisson’s equmatSuppose that we
wanted a more accurate approximation for the flux for Poissequation
than we got in Section 3.3. We could choose to use four coatiloime av-
erages to compute the fluX; o, Ti.1, Ti, andT;_1. Find the most accurate
possible approximation to tr@w% and determine the leading-order trunca-

tion error term. Combine this flux with its analogiat % to get a high-order
approximation to the Laplacian in 1D, and find the truncatomor for this
Laplacian approximation.

4. Show that the flux for the control volume boundaryi a{% for the wave
equation really is'l'i+%

5. First-order upwind flux for the wave equation. The flux T, L1 can be ap-
proximated most simply by using data from the control volumwmd of the
interface; for a positive wave speed, this is control volum8how that this
approximation is only first-order accurate.
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6. Centered flux for the wave equation.Suppose we were to use two control
volume averagedl{ andT;. 1) to evaluate the flux at+ % Find an expression
for the flux, determine the accuracy of the flux (including ks&ding-order
term in the truncation error), and find the flux integral fog tD case.

7. Upwind extrapolated flux for the wave equation Suppose that we wanted
a more accurate approximation for the flux for the wave equatihile still
using upwind data. We could choose to use two control volunesages
to compute the flux ait+ %: T; andT;_;. Find the most accurate possible
approximation to the flux and determine the leading-ordendation error
term.



Chapter 4

Accuracy Assessment for Numerical
Solutions

4.1 If an exact solution is available

Suppose that for some problem of interest we have an exadi@ole(x,y) and a
numerical solutioruay(Xi j,Yi.j) on a mesh with spacingx. The errorE; j in the
numerical solution is:

Ei j.ax = Ue (%}, Yi,j) — Oax (X}, Vi)

So that’s simple enough, and so is plotting the error. Thisgige useful informa-
tion about the location and (often) the source of numerigalrs. It can also give
useful information about places where the solution is nebikeed well enough;
poor resolution leads to increased truncation error, windhshow up in these
plots.

To summarize the error as a single number, there are thremoatp-used norms:

e, = 2215 )
Si% B

IEiill = vljmaxj (4.2)

I3l = max|Ei (4.3)

29
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Order of accuracy can be determined by computing some eoron for each of a
series of meshes and determining the slope on a log-log ptbecerror versuax,

for example. This slope will be the order of accuracy of thehnd. In general, the
order of accuracy determined in this way will not be exactl,13, etc. Variations
of as much as 0.2 or so are routinely accepted as insignificéms sort of analysis.

The global norm4.;(Equation. 4.1) andl>(Equation. 4.2) often converge a half or
full order faster than the., norm (Equation. 4.3), which is a local measure. That is,
theL. norm can converge d3(Ax) because of a local error at a point, while the
norm will converge a® <A>c°’/2) and theL; norm will converge a® (Ax?). While
this is notalwaystrue, it does happen sometimes.

4.2 If an exact solution isnot available

Suppose we have solutions on three medhgdM,, andM3, whereM, has twice
as many mesh points &, andM3 has twice as many add,. We assume that the
error in each solution is proportional to its mesh spacingpime powek; then we
can write the solutions as:

U|Ml = Ue+CAXk

k
AX
U|M2 = Ue+C (?)

k
AX
U‘Ms =U+C <Z)

Taking the norm of the difference of the solutions, we expecfet:
1
Julaay — Ul | = Co¥& (1_?)

and

1 1
b, v | =% (5~ )

First, the difference should get smaller as we refine the m8slsond, if we take
the ratio of these last two expressions, we get

1(4 1
U —unl F(1-%) 1

[ulmy — Ulm,|| <1_2_1k> o2
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Clearly, we can use this to evalu&teAnd there’s more good news: we can estimate
the error norm for the finest-mesh solution. That norm elsﬁlﬁxkzlg. The norm

difference between solutions &, and Mz is CAXK (Elﬁ — Zlﬁ> The ratio of these

two is:
1

Emell & _ 1
HU‘MZ_U‘MIiH %_k—l 2k—1

So now we can estimate the error norm for the finest mesh.

This approach has several pitfalls.

e The solution must be continuous, because otherwise ermonhare very
tricky to evaluate.

e Each of the three solutions must be accurate enough (featuust be well-
enough resolved) that the error may be assumed to follovsysptotic be-
havior.

¢ In any event, the error norm that is computed is not the mdéiabte estimate
in the world.

4.3 Problems

1. For a particular discrete problem, thg-norm of the error in the solution
(measured by comparison with a known exact solution) isrgixe

| Mesh | Lo | Ratio |
10x 10| 4.68-10 2] —
20x 20| 9.08-103 | 5.15
40%x 40| 2.13-10°° | 4.26
80x 80| 5.32-10°% | 4.00

What is going on here? What would you estimate is the truerarfiaccu-
racy?
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2. Suppose that you are solving a problem for which you do agelan ana-
lytic comparison solution. You take norms of the differemeceaolutions on
different meshes and get the following data:

| Mesh1| Mesh2 | L, |
20x20| 40x40 |1.25-10°
40x40| 80x80 | 1.78-10°°
80x 80| 160x 160 | 2.55-10°°

Find the actual numerical order of accuracy of the schemeeatithate the
error in the computed solution on the finest mesh. What do gk s the
order of accuracy that the scheme is analytically expectedhieve?

3. For unstructured meshes, estimating order of accuraaynigplicated some-
what because one can't just double the number of cells in éaettion. The
following table contains error data for a 2-D advectiorfudifon problem (as
calculated by my research code), using an exact solutiotoimparison. Es-
timate the order of accuracy for each norm.

| #cells | Ly | L, | Loo |
64 |3.923.10°]4.669-10 3| 9.370-10°°
240 | 1.295.10° | 1.716-10 3 | 6.239-10 °
922 | 1.965-10* | 2.656-10% | 1.721-10°




Chapter 5

Time Accuracy and Stability
Analysis for Ordinary Differential
Equations

As we shall see, the space discretization of a partial @iffeal equation in one
space dimension results in a coupled system of ordinargreéifitial equations in
time, one equation for each unknown in the spatial mesh.gossible to analyti-
cally transform this system of ODE’s into an equivalent dgided system. While
there is no practical application for this transformatiortérms of how we solve a
system of PDE’s, the decoupled system is much easier toantydetermine the
time accuracy and stability properties of a numerical sahem

Accompanying this theoretical discussion is a set of exasgthowing how to apply
these techniques to real time advance schemes.

5.1 From PDE to Coupled ODE'’s

Suppose that we have a generic space discretization for arP&ndt written as

oT dTi
e d_tl =aTiot+aTi1+agTli+aTirr+axTis2

This is referred to as theemi-discrete fornof the PDE, because the equation has
been discretized in space but not in time. Now let’s writesbmi-discrete form of

33
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the equation for every point in the mesh, assunpegodic boundary conditions.
This gives us a coupled set of ODE’s for the

dT

d—to = a ol 2tali,1+alo+arTy+axl;

dTy

i a ol —1+taiTot+taglhi+agTa+agls

dT

T asTlot+ta1li+ala+aiTa+axly

dT

i apTlio+a1Ti—1+agli+aTir+asTiso
AT 1
. a 2T w3t a 1Tipm—2+ a0 i1 +aTo+azly

This can be re-written as:

To [ag a @& ap a| To
T a1 a a & ap T
g T ap, a1 a a & T
Ti ap, a1 a a a T
Tima—1 | a1 @ ap a1 ag | \ Tt
or as
dT .
H = Bp (a*27a717a07a17a2)T (51)

So far, nothing fancy has happened — we've just discretized®DE in space and
manipulated the result into a convenient form. This apgnoaid! alwayswork;
no matter what differential operator we have in space or wvditretization we
use for it, an equation like 5.1 can always be derived. Thg difference among
such equations is the number of diagonals inkheded periodic matriand what
numbers go into each diagonal.
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It can be shown (see Appendix B) that the matBix(a_»,a_1,a0,a1,a2) has a
complete eigensysteniherefore, we can construct a matkxwhose columns are
the right eigenvectors d@p and use it to diagonalize the system in Equation 5.1.:

_1dT . .
Xgp = XTBp(XxH)T
d(x*f)
_ -1 =1F
—5~ = (X7BpX) (x T)
dw _
a -

wherew = X1l is a new set of unknowns amdis a diagonal matrix whose diag-
onal entries are the eigenvaluesBy This is a system ofnax uncoupledODE’s.
Solving this system is equivalent to solving Equation 5.1.

Summary We began with a PDE; discretized it in space to get a systerowf ¢
pled ODE’s; and diagonalized that system to get an uncouistém of ODE’s.
Because the two systems of ODE’s are completely equivaleatstability limita-
tions for a time advance method applied to each of them isahees This means
thatwe can analyze the stability of time advance methods coetplatiependently
from space discretization methods.

Analysis of a time advance scheme for a model ODE will tell isiteigenvalues
the matrixB, can have for the combined space and time discretizatiomsehebe
stable. In fact, we can easily get a bit more than that: we caltfie amplification
factorG for any eigenvalue in the complex plane. This informatiomdependent
of the spatial scheme that produced the eigenvalue; thedtiivence analysis needs
no information about the spatial discretization, not evendifferential operator.

5.2 Analysis of Time March Schemes for ODE’s

We're going to analyze time advance schemes using the mdael O

dw
— =Aw 5.2
at (5.2)
INote that this isn't typically useful in a practical sensecause we rarely have periodic bound-
ary conditions and often are solving non-linear equatidhs.we don’t solve real problems using
this transformation; we just use the transformation to luslpnalyze time advance schemes.
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The exact solution of this equation is:

w(t) = At (5.3)

Consequentlyy grows exponentially in time whefl(A) > 0 (=inherently unsta-
ble), decays exponentially whém(A) < O (=inherently stable), and has constant
amplitude wheril(A) = O (=neutrally stable). Thamplification factoro of any
solution — exact or numerical — is defined as the growth rath@®olution from
time levelt = nAt to time levelt + At = (n+ 1)At. The amplification factor for the
exact solution to the model ODE 5.2 is given by

Cw(t+Ay) o owrt (AAD?Z  (AAL)3
Oexact= w(t) =W =g =1+AAt+ > + 5 +

(5.4)

The difference between one numerical time advance scheoharmother comes
down to how we approximate the derivative on the left-hanlé sind the solution
data on the right-hand side of Equation 5.2. We’ll examinaralper of alternatives.
In each case, we'll replac%tﬁ andAw with terms containingy”, w*1, etc. Then
we'll solve for the amplification factoo = w"/w",

The accuracy of a time advance scheme depends on how well its amplification
factor matcheg ! for small values of\ At; that is, on how many terms of the Taylor
series expansion of Equation 5.4 are matched by the disschtame: the order of
accuracy is equal to the highest-order term tmatchesthe exact amplification
factor? A time advance scheme is said to $table for all complex eigenvalues

for which the magnitude of the complex amplification fadiof < 1.

We can combine the analysis results for a spatial schemee{ffeavalues\ as a
function of the spatial stefix) with the results for a time scheme (the amplification
factor o as a function of the eigenvaluds and time stepAt) to determine the
stability properties of a particular space/time discegian (the amplification factor
o as a function ofAx andAt). This result will tell us whether there is a maximum
stable time step for a given scheme, and if so what it is. Septeh5.5 for more
information about this.

2Yes, this is slightly different than for space schemes, bseaf a difference in analysis ap-
proach. Using Taylor series expansions for time analysissgiesults that are interpreted in the
same way as Taylor analysis for space schemes.
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5.3 Caveats

There are several assumptions made in this analysis thalidshe explicitly stated,
as they imply restrictions on the applicability of the reésuf the analysis.

Periodic boundary conditions. This analysis only applies to periodic boundary
conditions. Similar but more complex analysis is possibldetermine the
eigenvalue structure for cases with more realistic boyndanditions; these
eigenvalues can be used either analytically or graphitalghow stability.

Linearity and stationarity. We have assumed that the entrie8jdo not depend
on the solution and do not change with time. That is, we asduime the
problem idinear andstationary We can’t guarantee that our results will have
any meaning for non-linear or non-stationary problems —e like Navier-
Stokes equations, for example.

Despite these restrictions, one can often perform thistingeriodic stability anal-
ysis and use the results to choose a time step for more catgdiproblems; gen-
erally, the maximum time step will have to be reduced by eofact 0.6—-0.8.

5.4 Examples

The first series of examples looks at eigenvalues for spaceadization schemes.

5.4.1 Eigenvalues for the second-order accurate Laplaciaop-
erator

If we use the centered derivatives of Section 3.3 in a spdisalretization of the
heat equation, we get
dT aTi+1—2Ti +Ti1
dti NG

a 20 _«a i
s0Bp = Bp(0, 3.2 —n2» a2y 0) @nd the eigenvalues are

(5.5)

2a
A= —m(l—cosm().

These eigenvalues fall on the negative real axis, betweeial Gg%.
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5.4.2 First-order upwind flux for the wave equation

In this case (see Section 3.5), the fol is approximated to first-order accuracy

by usingT;. To find the eigenvalues of thls spatial operator, we firstenthie semi-
discrete form of the governing equation by using the fluxgraé

aTi _uTi—Ti—l
ot AX
u u
— B (2~ 2~
p(Ax’ Ax’0>

Then the eigenvalues can be written down immediately:

= %( (—1+cosg — I singx)

This is a circle of radius, centered af—4;,0).

In the following series of examples, each time advance sehsrmnalyzed by using
the model ODE defined in Equation 5.2 to determine both theracy and stability
of the scheme.

5.4.3 Explicit Euler scheme

The explicit Euler time advance scheme ukaswnsolution data at the current
time leveln to approximate the time derivative of the solution. Whenliggizo the
model ODE (Equation 5.2), this gives:
wHl —wh
— =AW 5.6
A (5.6)
or
Wl = w1+ AAL)
which implies that
o=1+AAt

This scheme matches only the first-order term in the Taylesexpansion oAt
and so is only first-order accurate. Regarding stability,

0] =/ (D(A)At+ 12+ (0(A)At)?
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The contours of the magnitude of the amplification factor (&g < 1) as a function
of complexA At (written asl dt in the captions) for this time advance scheme are:

4 1.5 Im( d)

//,/,"””’_/" - . :\\ - ‘"”\‘::\\\\\\_ 05

Re(l di)

Note that only the upper half of the complex plane is showe;dbntours in the
lower half of the plane are mirror images.

5.4.4 Implicit Euler scheme

The implicit Euler time advance scheme usesuthknownsolution data at the+ 1
time level to approximate the time derivative of the solnti®Vhen applied to the
model ODE (Equation 5.2), this gives:

+1
% —awl (5.7)

or
Wi —aat) =w"
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which implies that
1

T 1
To determine the order of accuracy of this scheme, we need &ble to compare
this amplification factor to the exact amplification factdreguation 5.4. To do
this, we note that (foA At < 1),

o

J— —_— 2 3 PR
= T = L+ ABLH (AB + (A +

This scheme matches only the first-order term in the Tayldeseexpansion of
e’ and so is only first-order accurate. The magnitude of the Hiogilon factor
is given by:

1
11— AN
1

V(@=0Q) 8%+ (T(A) A

The contours of the amplification factor in the complex pléorehis time advance
scheme are shown below. It is easy to show that these cordmucircles centered
atAAt = 1. The scheme is unstable only for eigenvalues that fakienaiunit circle
centered at this point.
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5.4.5 Explicit Runge-Kutta schemes

Explicit Runge-Kutta time advance schemes are those schémaehave the fol-
lowing properties:

Explicit. The flux is evaluated from known quantities; no solution o&har systems
is required.

Self-starting. No data from time leveh — 1 is required. A consequence of this
property is that the amplification factor is single-valued.

“Minimal”. (I can’t think of anything better to call it.) The amplificati factor
of ak-th order accurate Runge-Kutta scheme matches the exadtfieatipn
factor up to and including the ter@ (Atk) and contains no further terms.

We have already encountered an explicit Runge-Kutta schémeeexplicit Euler
scheme. As you will recall, when written for the model ODEstbcheme is
Wil —wh
At

Clearly the first two properties of Runge-Kutta schemes atisfeed. To verify
the third, recall that the amplification factor for the exfiliEuler scheme igr =
1+ AAt.

We will also use two- and four-stage Runge-Kutta scheme®relare numerous
variants on these schemes, but the two we will use are:

Wl — WA Aatw@

=Aw"

wd = \/V”+%Atvv” (5.8)
and
wHt = W”+A—6At<vv”+2W(1)+2w(2)+w(3)>
w® = waatw®
w2 = WD atw® (5.9)

Wb = m%mw
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A second-order Runge-Kutta scheme

This scheme is written for the model ODE as

Wl — waatw®
Wb = m%mw

Combining these two, we get

(AAt)?

wtl = w”+/\Atvv”+TV\/‘
2
g = 1-1-)\At—i—()\2t>

So the scheme is evidently second-order accurate.

Now let’'s consider stability. Along the negative real atitse amplification factor

IS:
2

o=1+a+ 2
B 2
wherea = AAt is real and negative. Foo| = 1, we require:
a2

a+—==0
+2

ora=0,—2. The scheme is stable inside this region and unstabledeutsi

Along the imaginary axis,
2

b
o_1+lb—§

wherelb = A At with b real. The magnitude of the amplification factor is

\o|:\/1—b2+b—4+b2:\/1+b—4>1
4 4

The scheme is always unstable for pure imaginary eigensalliee stability con-
tours for this scheme are shown below.
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1.5 Im(l dt)

\
R
|

[ C : B

. Lo T :

o w4 05
| N S ' !

Re(l dt)

5.5 Stability Analysis for Fully-Discrete Systems

We've seen how to analyze time discretization schemes aacesgiscretization
schemes in isolation. Analyzing time and space discreétizaindependently gives
us full information about accuracy, and the two analysesigeocomplementary
information about stability. Specifically, analysis of 8ndiscretization schemes
applied to the model ODE tells us what the stability boundsfar a given time
advance scheme, by providing an expression for amplificddictor as a function of
the eigenvalues of the space differencing scheme. Analyie space differencing
scheme tells us what those eigenvalues are.

We can determine the stability of a fully-discrete approdiion to a PDE A by
combining the time and space analyses either analyticallyaphically.
Analytically, we would substitute the eigenvalues of thatsd operator in the form

Ak (AX, ) into the amplification factoo (AgAt). The stability limit for the com-
bined scheme is determined by the maximum time step for wifiehworst-case

amplification factor magnitude — that is, ma® (Ax (AX, @) At)| — is less than
one.



44CHAPTER 5. TIME ACCURACY AND STABILITY ANALYSIS FOR ORDINARY DIFFERI

Graphically, we would plot the stability limits for the tindiscretization in the

complexAAt plane, then overlay curves showingAt (Ax, ¢k) for the space dif-

ferencing scheme for various non-dimensional times. Alfioless precise than
analytic methods, the graphical approach is generallyeeasi

5.6 Examples

5.6.1 Upwind flux with explicit Euler time advance

We know from Section 3.5 that the eigenvalues for this spafiarator are:
u
M = — (e"“’K -~ 1)
k AX

u :
= & (—1-+cosy — I sing)

This is a circle of radius}, centered af—4%,0).

Also, we know from Section 5.4.3 that the amplification fadtw the explicit Euler
time advance scheme is:

0] = /(DA + 12+ (D(A)At)?

This quantity is less than one for alyAt that falls within a circle of radius 1
centered af—1,0). Therefore, the scheme is stable|(< 1) if and only if% <

1. The paramete5:‘AA—Xt is called theCFL number after three guys named Courant,
Friedrichs, and Levy.

5.6.2 Centered flux with explicit Euler time advance

Using a result from Problem 5.2, we know the eigenvaluesisfdpatial operator:

_ YU e o e
A = 2Ax<e © )
= ilsin(n(
AX

These eigenvalues lie on the imaginary axis, and therefdsade the stability range
of the Euler time advance scheme (see Section 5.4.3) forirzaeystep.
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5.7 Problems

1. Eigenvalues for the fourth-order accurate Laplacian operdor.

Suppose that we use the fourth-order accurate Laplaciaafiabyzed earlier
in class to discretize the heat equatfofihis gives us

oT q= iy2+ 28T 1 — 54T +28T_1—T_»

oXi 24)x2

Find the banded periodic matrix associated with using tlserdtization on
a periodic mesh, and find the eigenvalues of that matrix. @edleigenval-
ues fall into the same range as those for the second-orderated aplacian
space discretization?

2. Eigenvalues for centered flux for the wave equatiolsuppose that we choose
to evaluate the flux for the wave equation by usTpg% ~ (%) this is

second-order accurate. Write the semi-discrete form ofvne equation us-
ing this flux approximation and find the eigenvalues assediaiith the space
scheme.

3. Upwind Extrapolated Flux for the Wave Equation If we use two control
volumes upstream of an interface to estimate the flux for theevequation,
we get o
3li—Tia

T~ 2

which is second-order accurate. Write the semi-discrate fof the wave

equation using this flux approximation and find the eigersslassociated

with the space scheme. Plot these eigenvalues in the corplale® (remove
the factor ofz; before plotting).

Nl

4. Trapezoidal scheme The trapezoidal scheme approximates the model ODE
using a centered approximation for the data on the RHS:

Wn+1_Wn _AWn+1+Wn
At N 2

3Note that this discretization is in terms of tageragevalues in the control volumes. A finite-
difference discretization, which assumes point-wiseesif the solution at mesh points would give
a different discretization. The reasons for the differea@somewhat technical, but hinge on the
fact that the finite-volume flux implicitly assumes a cubiciaton in the solution. This assumption
has specific implications for the difference between theaye value in the control volumg and
the value at the center of cell T(x ), which in turn account for the difference between the finite
difference and finite volume discretizations.
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Find the amplification factor for this scheme, and plot it. &éhin the com-
plex plane is the scheme stable?

5. Fourth-order accurate Runge-Kutta scheme. Analyze the fourth-order
Runge-Kutta scheme given in Equation 5.9. Find and plot thpliéication
factor. Determine which region in your plot is the one whére $cheme is
stable.

6. Extrapolated upwind flux with two-stage Runge-Kutta time advance
The space scheme of Problem 3.7 and Problem 5.3 is secoadamrcurate
in space, and will give a fully-discrete scheme that is sdemler accurate
when used in combination with the second-order Runge-Kiurta advance
scheme. Combine the eigenvalues for this scheme (eithghigadly or ana-
lytically) with the amplification factor for the two-stageiRge-Kutta scheme
of Section 5.4.5 to find the time step limit for the combinelesue.

7. Heat equation, second-order in space, explicit Euler in time. Suppose
we wanted to use the second-order accurate Laplacian tizstien in space
and the explicit Euler time advance scheme (Section 5.4.8pltve the heat
equation. Using results from Section 5.4.1 and 5.4.3, fiedatmplification
factor for this fully-discrete scheme and determine theimar stable time
step.

8. Heat equation, fourth-order accurate in space, implicit Eder in time.
Repeat Problem 5.7 using the fourth-order accurate sghsiatetization of
Problems 3.3 and 5.1 and the implicit Euler time advancersehe



Chapter 6

Systems of PDE’s

We've talked all term about linear, scalar model equatibesause these are easier
to analyze and understand than non-linear systems of eggatNow it’s time to
take the plunge and look at systems of equations. Insteadsofgée unknown

u, we now have a vector of unknowhs$ at each point. This vector might be
as simple(u, v, w, P)T for the incompressible flow equations or something like
(p, pu, pv, pw, E, Ey, po,, PN, Po, pNo)T for a compressible reacting air calcula-
tion, whereE, is the energy in vibrational modes and the subscripted tessire
species densities. Or it might be something even more coatptil.

The evolution of these unknowns depends on flux vedtofs, andH, (in thex-, y-,
andz-directions, respectively) and on a source ve&aall of which are (possibly
non-linear) functions of) .
n Fi
dui j ¢ =

+ Gj | -AdA=Sk (6.1)
dt v\ i

For the incompressible flow case above, the flux vetmight be(u? 4P, uv, uw, u/B)T;
this corresponds to a method knowreassficial compressibility For the reacting air

problem, the flux vector would bigou, pu? + P, puv, puw; u(E + P), UE,, po,U, pnU, Pou, pNou)T.

Systems of equations are discretized in much the same wapkas squations. For
example, we can discretize the one-dimensional equivaldatjuation 6.1 as

n n
__ 2
At AX S (6-2)

47
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Fluxes ati -|—% can be calculated using the same approaches we've already di
cussed.

This discretization uses the explicit Euler time advandeeswe. From our study
of model equations, we know the stability region for thisgiadvance scheme. To
prove (or disprove) the stability of a linear system of PDEa” we would need to
do is find the eigenvalues of the system of equations imphleHduation 6.2; this
would lead us to a stability bound just as similar analysiéfdr the scalar case.
For non-linear systems, things are more complicated; a geadral rule is that the
stability bound will be lower for non-linear problems thasr the linearization of
the same non-linear problem.

The explicit case is simple to implement; all that need beedsrto compute the
fluxes and take differences of them. However, for systentsgsigor scalar equa-
tions, explicit schemes often prove to be inefficient. A denmplicit discretization
of the conservation law would be

Fl’H—l FI’H—l

UinJrl—Uin i+2 |_, +1
AN A +9' (6.3)

The catch is thaE™ ! is a function of (for examplely™** andU*";!. However, we
I+35
can approximate

dF (U;,Uis1) "

FT; =F (U;,Ui12)" & F (U, Ui )" + At o +0(At?)
and N N 0
OF (Uj,Ui;1) _ 0F 0U; OoF 0Uj.1 (6.4)
ot JduU; ot oUj,1 ot '
by the chain rule.
We can re-write Equation 6.3 i+-form as
11 0FU, UM 1 dF(U. 1,U n+l
(At+Ax aU, TA U Jau
F", —F"
i dF(Ui,Ui+1) nel 1 dF(U. 1,U) el i+3 i—3
*ax oUi 1 U1 AX  dUi_; Uiy = AX (63)

In hope of shedding some light on this, let’s look at a spe@kample wherd-
andU are both scalars. For the energy equatidn;s T and the flux can be written
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asF = uT‘JFZTi+l — aT”Al):T‘, using centered evaluation of the advective flux. Then

Equation 6.4 can be written for this case as:

n:<u O{)”(?Tin_i_(u O{)M?Tiil

27 ax) ot T\27 ax

OF (Ui,Ui11)
ot

ot

and the fully implicit discretization can be written as

n
(G ) ax )~ a0, )V

L Ay LU Gygynt o _TiE
A (2 * Ax) Uiyt AX < ) oUly = +9

This is more or less the result we expected.

There are two major things that we need to know before we dae ste system of
equations posed by Equation 6.5: how to computeJ#ebiansy; and 53, and
how to solve the algebraic equations that arise.

6.1 Computation of Flux and Source Jacobians

So we have a vector functida(U;,U;,1) and we need to know the partial deriva-
tives of the components &f with respect to the componentslgt For this purpose,
we can treat the componentsWf,; as constants and write simpy=F(U). In
general, all components of the flixdepend on all components of the stdteThat
is,

Fl(U17U27U37 cee 7Um)

F>(Ug,Uz,Us, ... .Up)

F(U)= F3(U1,Uz,Us, ... .Up)

Fm(U17U27 U37 <o 7Um)
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One must always write the componentsFoéxplicitly in terms of components of
U before computing

dU; JdU, 0JUs dUm

OF oU; dU, dUs Um
o 0Fs O0F3 JR = JFRs

ouU - oU; 0dU, 0Uj3 dUn
OFm OJFm O0Fm .. OFm

oU; 0dU, JUs dUnm

And that, believe it or not, is that. Note that the subscripthese equations repre-
sent the component of the flux vecteror the vector of unknowns, not anything
do to with the spatial discretization.

6.1.1 Example: Nearly the compressible Euler equations

Consider the following very simple case (compressible namssmomentum con-
servation with no pressure term):

p pu
U= pu F=| pu?
pv puv

The first step is to re-write componentsfoin terms of components &f:

pu U
_ 2 | _ U
B W A
puv 6—13
From here on things are straightforward:
0 1 O
oF Uz LU, 0 10
0= | u 252 0 | =| -2 2u ©
Ul _uls U “w v ou
u? U U
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6.1.2 Example: the compressible Euler equations

Compute the Jacobian for the following case:

p pu
U= pu F=| pu’+P
E u(E+P)

whereP = (E — %puz) (y—1). Remember to first write componentskin terms
of components of).
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6.2 Problems

1. Source Jacobian for One-Dimensional Flow of Dissoaigatxygen Con-
sider the case of one-dimensional compressible flow of axygth dissoci-
ation but no ionization. The species present in the flon@rendO. The

governing equation for this problem is
ou OF
ot Tax

where

and

Several notes are in order.

e Don’t worry too much about understanding the physics of pinadlem,
for two reasons. First, the physics is grossly over-singdifirom the
real world and therefore isn’t worth a huge amount of eff@econd,

the problem can be done by manipulating things algebrgigathout
knowledge of the underlying physics.

e The energ)E is defined as:

3 0 5 pu?
where Hgo is the chemical heat of formation of monatomic oxygen.
The internal energy expressions fOrand O, differ because),, as a
diatomic molecule, has rotational and vibrational energydas which

O does not have.



6.2. PROBLEMS 53

e The pressur® is defined a$ = pRT.

e The mass density dD, is not solved for explicitly, but instead is rep-
resented apo, = p — Po. The choice of computingo, by subtraction
is made because the mass fractioOgfis expected to be close to one;
subtracting in this way reduces round-off errors.

e The creation of monatomic oxygen is given by
Wo = (Po, — po) Aexp(—BT)

e Clearly it would be a lot easier to compute Jacobians usimpé&zature
instead of energy as a dependent variable. That is, using

in place ofU.
Find the flux and source Jacobiar%(and%, respectively). You will probably
want to take advantage of the chain rule. If you kr‘%wandg—\?, how can you find

g—S without analytically deriving it? (This is often a usefuilck, as some variable

transformations have treacherous Jacobians in one dindatit not the other.
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Chapter 7

Practical Aspects of Solving Poisson’s
Equation

7.1 Solving the Discrete Poisson Equation

Suppose we want to solve Poisson’s equation on the unitequar

0°T  0°T
W—i_d—yz - S(X7y) <X7y)8[07 1] X [07 1]

We'll talk about boundary conditions later. In the intermfrthe domain, we can

discretize the equation by

Tiij— 2T+ Tig n Tije1— 20+ Tij1 —
AX2 Ay?

S, (7.1)

This discretization is second-order accurate in bathdy, which you can all easily
verify at this point. If we write Equation 7.2 for every poiint the mesh, we get
a matrix equation of siz&l = imaxjmax In particular, for a 4-by-4 mesh with no

55
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source term, we get:

D
X

X Y Ti1
D
X

X O X
X
X O X <
X
<
Y .
() [

<

X O X
X
<
o
w

X
Y X D X Tos

Y X D X || Ta4
Y X D\ Tas

(7.2)

whereX = -1, )Y = 2L, andD = —2(X +Y). Note that the diagonals witfi’s in

=Y = a2

them are separated from the main diagonal (withDt by imax entries.

There are at least four ways to solve this huge matrix equatio

1. Direct inversion via Gaussian elimination, LU decomfiosi etc. This is

expensive. Even using the bandedness of the matrix, weegilire in gen-
eralO (i%axjmax) operations for direct inversion. As mesh sizes increase, th
soon becomes impractical.

Krylov subspace methods for solving linear systems sedint a linear
combination of vectors which minimize the residid= [A]R—B for a ma-
trix equation; this linear combination is used to updat&xamples of such
solvers include GMRES andiBGSraB. These methods are fairly memory
intensive and generally require a reasonable approximeaggse to a matrix
as a pre-conditioner. While these solvers are very effectiey are also quite
complex, and we aren’t going to discuss them.

Point and line iterative methods don’t pretend to be ablget the right an-
swer in a single pass. They act by updating the solution apoirg or along
one line in the mesh at a time. Many iterations are requirambtwerge, but
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each iteration is very cheap. The drawback to many of theskads is that
they are extremely bad at damping long-wavelength erratfsarsolution.

4. Multigrid methods are typically used in conjunction wghmple iterative
methods. An iterative method is used to damp the highestémey errors.
Then the remaining error is used to drive a Poisson problem mesh with
half as many points in each direction. When this problem tesntsolved,
perhaps by using multigrid recursively, a correction ieipblated back to the
fine mesh. Both in theory and in practice, a well-designedigmd method
can solve Laplace’s equation to machine zero in a computatmst equiv-
alent to around ten applications of the iterative methodl ume the finest
mesh.

All of these techniques can also be used to solve the systeptguations arising
from discretization of the Navier-Stokes equations — andfathem have been
used successfully.

7.1.1 |Iterative Methods for Poisson’s Equation

We've discretized Poisson’s equation as

Tiin)—2Tj+Tia, n Tije1— 2T+ Tija —
AX2 Ay?

S, (7.3)

We can solve this fof; ;:

—”2AX2+2A}’2 _ -|Ti+1,j +-|Ti—171' n -Fi7i+1+-|?i7i—1 _
RNV IN% Ay?

S,j

Usingk as an index for the iteration number, the simplest choiceautdomake in
an iteration scheme would be Point Jacobi method

Ay? AX? AXCAY?

Thtl_ =Y (gkooaTk o\ (Tk Tk g, —~ Y

Tij 2 (AX2 + Ay?) (T'“J +T'*1’J)+2(Ax2—|—Ay2) (T'~J+1+T'~J*1> S“2(Ax2+Ay2)
(7.4)

To compute all new values ofikj“, we would sweep through the entire mesh.

This scheme requires storage for two copie3 ofMe can both reduce storage and

(it turns out) improve efficiency by using the latest avdiathata while sweeping
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through the mesh. If we sweep in order of increasiagd then increasing! our

iteration scheme would formally look like: Point Gaus
, , y method
Ay JAVS AV GIA\Y;
T T AR & L ST .c 2 0 R AN Tk+l _ ey
Tij 2(DX2 + Dy?) (T'“’J +T'*lﬁl)*—Z(AxM—Ayz) (T' RN 1) S. 12 (02 + Ay?)
(7.5)

This looks harder to code, but it isn’t. With only one arraystoreT, the data to
computerT; J“ automatically comes from the iteration levels in Equatidh 7The
point Gauss-Seidel scheme can be shown both analyticallgamputationally to
be more efficient than point Jacobi.

One thing that quickly becomes apparent when looking inidatahe computa-

tional behavior of these schemes is that the update to thé@ois always smaller
that it needs to be. A logical thing to try, then, is to inceeéise update by some
factor. When applied to point Gauss-Seidel, this resulteéfollowing scheme:

AyZ AXZ AXZAyZ

P e . AR £ SEE - T~ I S AN € Tkt _ XAy gk
b 2 (DX2 + Dy?) ( i+1j T H,J) +2(Ax2+Ay2) ( i1t Tio 1) S’Z(Ax2+Ay2) i
TN = TN+ it (7.6)

This scheme is referred to as successive over-relaxatiOR)She over-relaxation
parameterw, must be less than two for the iterative scheme to be stable.

Test case:Solve Laplace’s equation with boundary conditidn,0) = T(0,y) =

0, T(x,1) =sin(r1x/2), andT (1,y) = sin(mty/2) and initial guess of 0. At this point,
we aren’t worried about the exact solution, but only aboatrtite of convergence.
This is commonly measured by computing norms of the chantfeisolution from
one iteration to the next. For point Jacobi, point Gaussi&eand point Gauss-
Seidel with SOR ¢ = 1.8), theL1; norm of the change in solution is shown in
Figure 7.1. Notice that the point Jacobi scheme appearstgeoge faster initially
(say the first 50 iterations or so). This is an illusion. Thenpdacobi scheme is so
local in its effect that this initially-fast convergence irely reflects the slow rate at
which information “propagates” via the iterative schemaisicorresponds to very
poor damping rates for low-frequency (long wavelengthdesr

That is, with loops like this:
for j = 1, jmax
for i = 1, imax

end for
end for
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T e
| —— Point Jacobi
— — Point Gauss—Seidel

PGS w/ SOR

1e-03 |\

le-04 |

L1 Norm of Change in Solution

1le-05

0 500 1000 1500 2000 2500 3000
Iterations

Figure 7.1: Comparison of convergence rates for pointtiterdchemes applied to
Laplace’s equation.

One can also solve simultaneously for all values along aihnthe mesh. For
example, we could obtain all t 'Ek” with the same value of by solving this

equation: Line Gauss-Seidel
method
AX k+ kt1
- 2(AX2 +Ay2) 5 J+1 + 5.]
DX k1 AX =K X
—M%-l ] <Ti.j+l+Ti.jfl) (7.7)

Ay =k Tkl DAY
+2(Ax2—|—Ay2) (Ti+1~i+ - 11) S”2(Ax2+Ay2 <TT8)

Tk+1 Tk k+1
TIJ+ = T|7 +(JJ5+

This equation presumes that we are marching across links rtler of increasing
I, so that data at— 1 is available while we are solving along lineSuccessive over-
relaxation can be used with this scheme by settirga < 2. Figure 7.2 compares
the convergence rates of line and point Gauss-Seideliiteratethods. The line
methods clearly require fewer iterations. However, limedtions take about three
times as long as point iterations, so the point methods aterfi@ar this problem
In general, line iterative schemes are very effective whmplied along a direction
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of strong coupling — for example, across the boundary lagea viscous flow

simulation. Where coupling is less strong (as in this cas&#®Laplace equation),
line methods are less effective. Line methods also becolatvedy more efficient

when the number of mesh points rises because informatigorapagated” faster
by the iterative scheme.

le-01 —— —
i ——— Point Gauss-Seidel

— — PGS w/SOR
- - — Line Gauss—Seidel

T
1e-02 | — — LGS w/ SOR
\\ 1
1e-03 |\

le-04 g

L1 Norm of Change in Solution

~
b

le-05 b _—
0 500 1000 1500

Iterations

Figure 7.2: Comparison of convergence rates for point arel@auss-Seidel itera-
tive schemes applied to Laplace’s equation.

7.2 Boundary Conditions for the Laplacian

Learning Objectives. Students will be able to:

e Describe how to implement Neumann, Dirichlet, and mixedratzuy condi-
tions for Poisson’s equation in finite-volume form.

There are (at least) three categories of boundary condifenPDE’s: those that
prescribe the solution on the boundary (Dirichlet condisy those that prescribe
the gradient of the solution on the boundary (Neumann cmmdi}, and those that
prescribe some relationship between the solution and &dignt on the bound-
ary (mixed conditions). When solving Laplace’s equationddemperature field,
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these correspond to fixed temperature, fixed heat flux, amngection or radiation
boundary conditions respectively.

7.2.1 Neumann (Fixed Heat Flux) Boundary Condition

In the finite-volume formulation, we compute the integrattod flux around each
control volume. This makes it trivial to impose Neumann kaany conditions. For
example, in Figure 7.3, the flux integral is computed as ysxalept that the flux
along theli, | —% side of the finite volume is replaced by the prescribed boynda
flux — in this case, the most common value of zero is shown azampgle.

7
=

Figure 7.3: Finite volume with homogeneous Neumann boyndandition im-
posed along once side.

7.2.2 Dirichlet (Fixed Temperature) Boundary Condition

The situation is more complex when we are faced with a Dietthbundary con-
dition, because we have no way of directly imposing a valuéhersolution at the
boundary. We could set the value in dell of Figure 7.3 to the given wall value, but
this is physically incorrect. Why? Because the solutiougadtored for cell, j is
theaverage valuever that control volume. Imposing — for example = 300K
at the wall is not at all the same as saying that the average &l temperature
in the control volume next to the wall is 300K; any solutiorttwa temperature
gradient will be adversely affected by this incorrect baanyccondition.
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What we need to do for the control volumes next to the wall iscimpute a physi-
cally correct flux at the wall. To do this, we need to computenagerature gradient
at the wall. There are two straightforward ways to do this;rsults are identical
mathematically, but they are programmed differently.

//‘ T:TO

ghost

Figure 7.4: Boundary cell showing Dirichlet boundary cdiwati and ghost cell.

Approach 1: One-sided differences

One choice for computing the flux atj — % is to use one-sided differences. That
is, compute
o1 Tij— Tw

ay - Ay/2
and use this flux when computing the flux integral.

Approach 2: Ghost cells

Another choice is to createghost cellati, j — 1. This ghost cell lies outside the
computational domain, so any solution value we assign te fiurely fictitious
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except for its role in enforcing the boundary condition. ¥ get the temperature in
this ghost cell by linear extrapolation usifig; andT,, we will get a temperature
in the ghost cell of

Tijc1=2Tw—Tj

Using this value to compute the flux at the boundary results in

oT T T —2Twt T Tij—Tw

d—y ij—3 Ay Ay Dy/2

The flux is the same.

The difference lies in how one chooses to program the boyratarditions. One-
sided differencing requires a change in the way the flux isutated for the bound-
ary; ghost cells require an additional row of cells and somekvio set values in
these cells, but flux calculations are the same at the donmaindary as at interior
control volume boundaries.
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Chapter 8

The Wave Equation

In previous chapters, we have discussed several spaceranditicretization schemes
for the wave equation. In this chapter, we will look at the iasue remaining for
the wave equation: boundary conditions. Then we will look@he sample solu-
tion for the wave equation using simple schemes, and finaijpyoee some more
advanced schemes for the wave equation that are more sfutaasthe face of
real-world complications.

The one-dimensional wave equati(%%,-l- u‘f,—l =0, is very different from the Pois-
son and energy equations. Specifically,

e The wave equation is a hyperbolic PDE, whereas Poissonaiequs elliptic
and the energy equation is parabolic. (See Section B.1 fexplanation of
these terms.)

e The wave equation has fluxes that depend orsthetion whereas Poisson’s
equation has fluxes that depend ongradient of the solutioyand the energy
equation has fluxes of both types.

e The wave equation and the energy equation are both timeadepg but the
wave equation, as we shall see, has a much less severe timestection
than the energy equation.

65
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8.1 Boundary Conditions for the Wave Equation

We have discussed in detail how to compute fluxes for the wguaten in the
interior of a computational domain. What should one do atitvendaries? Let us
consider first the analytic problem for a finite domain, whigproperly posed as:

oT oT

ﬁ-l_uW =0

0<x<L 0<t
T(x0) = f(x
TOY = o)

The exact solution to this problem is

| f(x—ut) x>ut
T(X’t)_{ g(t—%) x<ut

Three key observations are appropriate here.

1. The solution propagates strictly from left to right, wiienplies that fluxes
should be calculated using data from the left (“upwind”)lsatthe numerical
solution will behave in the same way as the mathematicatisoluThis also
explains the lack of a boundary condition at the right boupdgor strictly
upwind schemes, we can evaluate the fl%g;Jr% just as the normal interior

fluxes for use in the flux integral for Ci\ax.

2. The flux at% can not always be evaluated using the interior flux scheme (no
tably for second-order upwind schemes).

3. The boundary condition at= 0 is sufficient for us to compute the flux there,
although this flux varies in time.

8.1.1 Flux evaluation atg (first interior interface)

For the second-order upwind scheme and its close varidmgd|ux would be eval-
uated by using extrapolation to estimate

3N -To

T
2

NIw
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Alas, we do not have a control volume 0 to use in this contexd.cauld choose to
use a first-order accurate flux here (eT%.,w T1), or we could choose to use a cen-

tered flux evaluatiori.e., Ty = 241 ) We could also extrapolate the temperature

using the boundary condition evaluated at an appropriite: ti
T% ~ Z-F]_ — g(t)
Equivalently, and possibly easier to code, we could use atgiedl and set

To=2g(t)~T1

8.1.2 Flux evaluation atx=20

At x = 0, the flux is known from the boundary condition, becaligé,t) = g(t).
In practice, this means that we have to be careful to evathatéux at the correct
time, which is always the same time as the flux integral istatedd. For example,
for the first-order explicit Euler time advance scheme, the ifhtegral is evaluated
at time leveln, so we usd' = T(x = 0,nAt) = g(nAt).

2

At what time should the boundary flux be evaluated for eachest# the two-
stage Runge-Kutta scheme of Section 5.4.5? What about tinesfage scheme of
Problem 5.5?

8.2 Basic Results for the Wave Equation

Consider a simple test case for the wave equation: promagatia sine wave at
unit speed in the domaij®, 1] on a mesh of forty control volumes with periodic
boundary conditions until timé= 1. At this time, the wave should be back to
precisely its starting position.

Suppose that we use explicit Euler time advance and threee sgiacretization
schemes: first-order upwind, second-order upwind, andnekoader centered. In
each case, the CFL number is 0.75, except for the second-gpdend discretiza-
tion, where CFL = 0.375. Figure 8.1 shows the results for tiés. For this time
advance method, both the centered and second-order upvgacktizations are
unstable. Almost as bad is the first-order upwind schemeg¢hwtiamps out the
solution rather quickly.
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15 T T T T T T T N T T

Exact ——
! First upwind -+
Centered =

N E/
FeE)

1 1 1 1 1 1

-1.5 *
0 01 02 03 04 05 06 07 08 09 1

Figure 8.1: First-order time advance for the wave equatith several space dis-

cretizations

Suppose that we replace the explicit Euler time discretimatith the second-order
Runge-Kutta time advance scheme, leaving everything béseame. The result of
propagating a sine wave with this time advance scheme isrsholigure 8.2. The
first-order upwind discretization gives even poorer reshdtre than for the previous
case. The second-order accurate schemes both do quitalteligh the centered
scheme is still ever so slightly unstable. The reason thatinistability is not yet
visible is that the amplification factor is very near one. &atso that the second-
order upwind scheme has what is known as a leading phaseferrihrese wave
length: the wave propagates a bit faster than it should.

Now that we have a schermehat works well for this case for the wave equation,
are we done? No. Suppose we were to propagate a square wealing a sine
wave (see Figure 8.3). The centered difference scheme aslclenstable, and
the first-order upwind scheme is clearly damping the satutiery rapidly. The
second-order upwind scheme is mod bad in comparison, except for the presence
of significant overshoots.

If we use a much finer mesh with the second-order upwind schemelon’t get
results that look any better, as shown in Figure 8.4.

1Or two, if our simulations are short enough that the unstabigered scheme is okay.
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Exact ——

First upwind -—+--
Centered &
Second upwind -

1

0 01 02 3 04 05 06 07 08 09 1

Figure 8.2: Second-order time advance for the wave equatittnseveral space
discretizations

25 T T T 4 T T T T T T
i Exact —
2t I First upwind —-— |
i Centered -+
: . Second upwind -=
15 N .

+
Jo
5

-1.5 ! ! ! ! ! !
0 01 02 03 04 05 06 07 08 09 1

Figure 8.3: Second-order time advance for the wave equptigpagating a square
wave.
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Figure 8.4: Effect of mesh refinement on square wave promagasing the second-
order upwind scheme.

Clearly, something needs to be done about this problem, bat?v

8.3 Advanced Schemes for the Wave Equation

8.3.1 Limited Extrapolation

Limited extrapolation seeks to eliminate overshoots ardetshoots in the solution
of the wave equation by not allowing new local extrema toeairsextrapolating to
compute the flux at+ 3. That s, if
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then‘l’i+
is

1 is replaced by mifiT;, Ti;1). Another way of putting this mathematically

max(T;, Tiy1)  if % > max(Ti, Tis1)
Tit1) if L’ZTH <min(T;,Tiy1)
otherwise

Yet another choice is to write this as a single series of max$min’s:

P . (3Ti—Ti_ _
Tiy= max(mln (Ti,Ti+1) ,min ('T'l, max(Ti,TiH)))

1 234567 38 91011121314

Figure 8.5: Example control-volume averaged solution

In Figure 8.5, the limiter will clearly be active a%zand 1(%, to prevent the increase
of a local maximum and decrease of a local minimum, respalgtifhe value used
at 3% will be limited to for the same reason. The value used%alvﬁl be limited to
the common value in control volumes 6 and 7. Finally — and nsabtly — the
value at % without limiting would be lower than the CV average value iW €,
although higher than in CV 10; this value would be limited xaetly the average
inCV 9.

8.3.2 Total-Variation Diminishing (TVD) Schemes

The total variation of a solution in one dimension is definedtfee sum of the
absolute values of the change in solution between suceesgivema. Referring
again to Figure 8.5, the total variation in this solution \bloe

TV = (T4—T1) + (Ta— Tio) + (Tra— Tao) (8.1)
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Total-variation diminishing (TVD) schemes have the préy#rat, while individual
extrema may get higher or lower, the total variation is noeréasing. That is, the
value of T;o might drop, but the total variation of Equation 8.1 would imatrease.
This implies that eithef; must increase of4 or T14 must decrease.

Upwind TVD schemes use a flux that (for the wave equation with 1) can be

written as

LS R0 S 8.2)

Fip=u T+
Note that for 1= 0 this reduces to the first-order upwind flux, while f,tqr% =1

we get the second-order upwind flux. The key element of upWMD schemes is
the definition ofy; this determines how much anti-diffusion to use (and troeef

how much diffusion remains)pi+% is written as a function of

It can be shown that the acceptable rangajfas the region outlined in Figure 8.6.
Values ofr less than zero indicate that Vs a local extremum; hergg must be
zero to avoid accentuating the extremum.

0 1 2 3
Figure 8.6: Legal values af(r) for TVD schemes

If r lies between 0 and 1, the magnitude of the slope is decreésingi — 1 to
itoi+1, as fori = 3 in Figure 8.5. For the maximum allowable valueyof 2r,
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Equation 8.2 reduces to

— 2ri+l — —
F.1 = ulTi+ 22(Ti—Tifl>

N TP
= Ti T,—T_
U{H—Ti__l_i_l(l |1)}

= Ul

This applies only in cases where the simple extrapolatipr-(1) creates a new
extremum(r < 3). For larger values of, the extrapolation can be used without
limiting. The lower boundary of the TVD region for decreagsiope,y =r, cor-
responds to using a central flux:

Tt
u|‘|‘|+1

1+

If r > 1, the magnitude of the slope is increasing frioail toi toi+ 1, as for =11

in Figure 8.5. For such control volumes, the second-orderingh scheme can be
used directly ¢ = 1). For moderate values of (1 <r < 2), the centered scheme
(g =r) satisfies the TVD requirements, but discretizations watigély downwind
dependence do not. For larg€> 2), Y is required to remain below 2. Fgr= 2,
the TVD flux becomes

— 2 — —
Fit =|ﬂﬂ+§m—ﬂ4ﬂ
= U2T-Ti 4
This is the value one would obtain by extrapolating from Cvandi — 1 to the

center of CVi + 1; consequently, this flux choice is more aggressive in steeg
smooth gradients than lower valuesyaf

Figure 8.7 shows) as a function of for three cases. The limited extrapolation
scheme can be written as a TVD scheme with

0 ifr<o
pry=< 2r ifr<; (8.3)
1 otherwise

The Superbee scheme follows the top of the allowable rangg fonaking it the
most “compressive”, or slope-steepening, of all possib® Bchemesy for this
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Figure 8.7: Three TVD limiters

case can be written as

0 ifr<oO
2r ifr<i

g =<1 ifr<1 (8.4)
r ifr<2

2 otherwise

Finally, van Leer’s scheme is a smoothly varying scheme asymptotic behavior
for larger that matches Superbee:

wiry ="

(8.5)

TVD schemes can be extended to higher dimensions by applyenfiux calcula-
tion direction-by-direction. That is, in two dimensionisetflux ati + %,j is calcu-
lated by using data from—1, |, i, j, andi +1,]. Likewise, the flux at, | —i—% IS

calculated by using data fromj — 1,1, j, andi, j + 1.

8.3.3 Flux-corrected Transport (FCT) Schemes
Flux-corrected transport schemes deliberately introéumoeigh numerical dissipa-

tion to produce monotone solutions, then cancel as muctaofitesipation as possi-
ble without producing overshoots. The prototypical fluxrected transport (FCT)
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scheme — called SHASTA — was designed as a second-ordeéecnethod that
had been deliberately “broken” by the addition of extraigiggon. The flux for the
wave equation using this scheme is

-ITi+-|Ti+1 1 UAt — —
Fo=u [T - (é + E() (Ti+a —Ti)] (8.6)

Without the velocity-independent dissipative flux, thipiecisely thd_ax-Wendroff
scheme, which can be shown to be second-order accuratedratichspacé.The
flux of Equation 8.6 is used to produce an interim solutionmetieveln+ 1:

fn+1_fn_u_At<
| -

n _pn
 (F,—F 1) (8.7)

i+3 i3
The first differences of the interim solution are computed:

_Enl Entd
Ai+% =T — T

and used to produce an anti-diffusive flux:

Fad —s. max<0, min <SA-1, a ‘A-
1+ =2

whereS= sign(AiJr%).

Note that the anti-diffusive flux has some similarities imnfioto the TVD diffusive
fluxes, in that in both cases, existing extrema are protdayedsing a first-order
accurate monotone scheme at extrema. For smooth solutherenti-diffusive flux
is carefully designed to precisely cancel all of the diftusadded in the first step,
giving a scheme that is second-order accurate.

The solution at time levet+ 1 is then computed using

-ﬁl’H-l — -i"-'il’H-l . (Fiidé . Fiidl) (88)

2

Despite having excellent properties in one dimension, floscected transport schemes
are not popular in two or three dimensions, because the geornmerpretations
of advanced FCT anti-diffusive flux formulae do not generlivell.

2This proof uses different methods than we have discusselds$s,decause the Lax-Wendroff
scheme can not, strictly speaking, be derived using the-desoiete formulation.
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8.3.4 Essentially Non-Oscillatory (ENO) Schemes

Simple extrapolation schemes for flux calculation for theewaguation, blindly ap-
plied, lead to overshoots and undershoots because extapoimplicitly assumes
that there is a smooth underlying function to extrapolatehat the solution can be
expanded locally in a Taylor series. This is not true neacatisnuities, and the
three previous families of schemes are all ways to fix theapxtiation so that it is
at least moderately well-behaved near discontinuities.

Essentially non-oscillatory (ENO) schemes take a diffeegproach. Instead of
trying to fix a mathematically invalid Taylor series expamsiENO schemes seek to
construct a valid extrapolation using smooth data. Moreipedy, an ENO scheme
of orderk produces an extrapolation thakigh order accurate for smooth solutions
and has overshoots that are no larger @gax<1).

There are a number of variations in the details of how to agt@imthis. | will out-
line a technique | developed for unstructured, multi-disienal meshes. The sim-
plification to one-dimensional, equally-space meshes ieemomplex than some
other schemes, but not outrageously so.

Suppose that there are no discontinuities in the solutidmenTcomputing a flux
using

=TT
Fip=u (Ti + %) (8.9)

can be shown to be second-order accurate. Unfortunatetyapiproach allows
large overshoots near discontinuities. For example, inféi@.5, the extrapolated
value at % is an overshoot. Because the jump from CV 5 to CV 6 i©¢f), so is
the overshoot. Suppose we rewrite Equation 8.9 as

_ oyl B T—T Ti—Tis
Fi+%_u{'n+?(aT+(1—a)T)} (8.10)

If a= % Equations 8.9 and 8.10 are identical. This flux is secomnlgoaccurate
for all values ofa, which gives us the freedom to chooaen order to prevent
overshoots from being too large.

Consider first the case of smooth extrema — where the nunhegcand derivative

im &7 T2+ T T
Ax—0 AXZ DX dx2
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is bounded and the one-sided differences

AT T T
Ax i Ax
AT _ Ti—-Ta
AX i AX

are also bounded. In this case, even though small overshwtde present, the
size of the overshoots can be shown t(ﬂ)(eﬁxz), which is acceptable for an ENO
scheme.

If there is a discontinuity 0© (1) between and (say) — 1, on the other hand, the
numerical second derivative is not bounded:

im N’T T|+1—2T|+T| 1 i
Ax—0 A2 DX X%

One first derivative is bounded while the other is not:

AT Ti—T

- = 1171 _9on1
AX i _ Ax @
AT _ Ti-Ta 1
AX i AX Ax

We would prefer to ignore the data from the left-hand contoblime, as it is clearly
(from a human viewpoint) irrelevant. To do this computadilly) we must choose
a carefully. One simple function that works well is

ol

AT
<—x|) AX?

WJr:

|>‘I>

) DX

W, +W_
It is easy to show that this choice afives

e Equation 8.9 in smooth regions, where all finite differereesbounded with
mesh refinement; more precisedy,> 3 + O (Ax?).
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e a— 1—0O(Ax?) when a discontinuity exists between control volurhasd
i + 1, this is a one-sided extrapolation with (more difficult Btitl provable)
small overshoots.

e a— O(Ax?) when a discontinuity exists between control volurnasdi + 1;
this is a one-sided extrapolation from the other side.

Note that a particularly clever choice @fvould give you a third-order accurate flux
at the interface for smooth solutions. | personally dond thgs choice. My interest
in this problem comes from the area of reconstruction onidiniensional unstruc-
tured meshes, where the extension of this order increas#iicaill or impossible,
so | don’t bother even in one dimension.

8.3.5 Sample Calculations

Figures 8.8—8.10 show the results of applying all theseraelsdo the wave equa-
tion with both square wave and sine wave initial data. In afies, the boundary
conditions are periodic and the solution is advanced in timé the wave has trav-
eled around the mesh exactly once.

For the square wave, either the Superbee TVD scheme or th&BMACT scheme
gives the best results, with the others also performingdyfaiell. For the sine wave
problem, the ENO and FCT schemes give the best results eohtlseir superior
performance near smooth extrema.

Which scheme is best overall? That's a very hard call, eafijg@n the basis of
only two test problems. Each approach has its strengths aadiressesDan-
ger: What follows is opinion and should not be construed as a consensus among
researchers or practitionersin CFD. My personal favorite is the ENO schemes,
because | understand exactly how to generalize them taampineshes. While
generalization is also possible with TVD and FCT schemessdlgeneralizations
all seem more forced to me.
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Figure 8.8: Upwind TVD schemes (square wave)
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Figure 8.9: ENO and FCT schemes (square wave)
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Figure 8.10: Propagation of a smooth solution (sine wave)
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Chapter 9

The Incompressible Energy Equation

The incompressible energy equation is useful both in its agimt for predicting
energy transfer and to provide experience combining cdiveeand diffusive terms
in the same governing equation before moving on to the N&tiekes equations,
which are mathematically similar in many ways but have thaeaccomplication of
being a coupled system of equations.

Also, the same equation can be used to model other physme¢gses. For exam-
ple, if T is interpreted as a chemical species concentration andisheus dissi-
pation term on the right-hand side of the energy equatioa kstow) is replaced
by an appropriate source term, then the energy equatioeatlyrrmodel species
concentration in chemically reacting flow.

The differential form of the incompressible energy equatian be written as:

9t ax T dy  RePr\ax oy

CEC (o2 () 4 (v Y
Re ox oy ox oy
Applying Gauss’s Theorem over an arbitrary fixed controbwoé, we can arrive at
the integral form of the energy equation:

0T duT ovT 1 (aZT aZT)

oT 1
—A VT.-ids = OT -rids
ot + oCV Re- Pr Jacv
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Ec ou\? v\ 2 v du\?
— — — — 4+ — A
+Re/cv <2<0X> +2<0y) +<0x+0y) )d

For a finite volume in a 2D uniform mesh:

dTi 1 oT' 2! oT"H I 2
— L AxA ~— Ay+— X
Y <5Xi%,j yr 9yij-1

dt Re-Pr
2 2
i+3,] Ec Uit1,) —Ui—1,j Vi,j+1—Vijj—1
T Play = +— (2 =L =) g2 ) A
+(u )I*%J y +Re< ( 27X T 20y Y

Ec Vi+17j—Vi—17j+Ui7j+1_ui71—1
Re 2A\X 20y

iit3 ?
-l—(vT)i’} 2 AX ) AXDy

172
Abbreviating the (constant) viscous dissipation term§ asnd combining the con-
vective and diffusive fluxes, we arrive at last at a fairly gaat form of the equa-
tion.

J— . l- P l
dTi; 1 1 aT\'"2) 1 1 aT\""*2
d o = (uT= i — (vT = — =§; (9.1
dt JrAx(u Re—Prdx)i_%JjLAy V! " RePray = Si @D
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9.1 Simple Discretization of the Incompressible En-
ergy Equation
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9.2 Time Discretization of the Energy Equation

9.2.1 Implicit Euler time advance applied to the energy equa
tion

If we write the energy equation in fully-discrete form usithg implicit Euler time
advance scheme, we arrive at the following equation:

ST 1 (e T - ue T
At AX 2
Tn+1 rn+l | n+l
1 <-|_in++1,j—2-|_i?fr +Tirfij>>

" Re-Pr AX

1 (T v T
Ay 2

1 -Flnj—:-ll - zﬁ?jﬂ + ﬁ?j—i_—ll
Re- Pr Ay

+Sj

In practice, we will typically want to write this in what iskbed d-form by replacing
T{‘ﬁl = 'I',“J + 51}f‘j+1 and simplifying.d-form is much more convenient near steady
state, where round off errors in the calculationToftan easily exceedT, the
change inl from one time level to the next.

OTi,j 1 <Ui+17jﬁi+17j —Ui—1,0Ti-1,]

At +Ax 2

B 1 ﬁi+17j —Zﬁ”‘ +ﬁi_17j
Re-Pr AX

1 (Vi,j+1ﬁi7j+1 —Vi7j—1ﬁi7j—1

Dy 2

1 OTij11—20Tij+0Tij1
Re- Pr Ay
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X . TN X .TNn
_ 1 U Ty —Ui-1Tilq
AX 2

1 (T — 2T+ T2y
Re-Pr AX

1 (Viger T VT
Ay 2

_ 1 Ti,j+1_2-ﬁ,nj+fi,nj—1
Re- Pr Ay

+ S

(9.2)

The right-hand side is the flux integral evaluated at timellay
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9.2.2 Trapezoidal time advance applied to the energy equain

The sole remaining difficulty is that we do not have data aetieveln+ 1 to evalu-
ate the fluxes on the right-hand side. We can, however, uderigsries expansions
to write these fluxes in terms of data at time leneFor example,
n+1 n+1 ;nt+l
Fi+%,j = F (Uhi ’Ui+1,j>
= F (U +0Ui ;U j+0Uiy1j) (9.3)
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n
] (9F|+2 F+ |
= F (U| ]’UH-]. ]) 0U| J 5U| ] + = aUl 5U|+1 J +O< 6U )9 4)

where a two-variable Taylor series expansion is used betlgaations 9.3 and 9.4.

This result requires that we calculate flux Jacobians: déves of the fluxes with
respect to the unknowns in nearby control volumes; see@e6til for more infor-
mation about how to do this. The Jacobians we obtain are:

B 1
IFN, 0 7B 0
1+3,] _ 1 U|J+U|+1j+ 1 0
oU: 2 2 Ax-Re
1] 0 Vi jtVitd Ui.j+Ui+1,j+ 1
| 7 4 AxRe
n
i+3.)
OUj 11,
n
L+
Ui |
n
it
oU; j+1

where the inviscid and viscous parts have been combined.
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If we substitute the expanded fluxes into the fully-discexjaation, we get:

JoF oF" oG [7'G
< I 1 ""271 1 -3, 1 b+ 1 1> oU;

N X 0U; DX dU; By dU; By aUi

n n n . en
+idF'+27 S Cichisy Y
AXU 1 O T axgU; Ot AX
n N
L, 19800 L 9G] Ciidgy ., _oui G
Ay 0V j 11 ) Ay dUI -1 . Ay

Multiplying by At and labeling terms in an obvious way, we can write:

(I + At Bx+ At By) dU;

F.n 1. F.n 1
FALCBUi 1+ MAGU 1 = —Atw (9.5)
G" _Gn
FALC, U 11+ ALAOU; 1 —At— Hsz izd

9.3 Approximate Factorization

We can re-write Equation 9.5 in a similar form to the one weduse the incom-
pressible energy equation by combining the various smatfices @, B, andC)
into large matrices:

5U171
oUz 1

(I + AtDy + AtDy) oV ;

dU: 1 Fn. —F", G" ,-@G"
) = —/At < i+3.  i—3. ij+3 b “)
OUit1
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[ Bx11 Cx11 ]
Ax;2,1 Bx;2,1 Cx;2,1
Ax;i—l,j Bx;i—17j Cx;i—17j
Dy = Axii, | Bxi,i  Cxi,j
Ax;i,jJrl Bx;i,j+1 Cx;i,j+1
Axi—13 Bxi—13 Cxi-13
L Ax;l,.] Bx;I,J _
[ By Cy11 T
By2.1 Cy21
Ayi-1j By;i—1,j Cyi-1,]
Dy = Ayij By, j Cyiij
Ayij+1 By;i,j+1 Cyij+1
Ayi-13 Byi-13 Cyi-13
L Ayl By,1.a
We can apply approximate factorization to get:
F.nl._F.nl. n 1_ n 1
| +AtD, [ +4tDy 80 = — (2l el Me W) g6
[I +AtDy] [I +AtDy) ( Ax + Ay (9.6)

This approximately factored system can be solved using dh@esapproach that
we discussed for the energy equation: breaking the probhéontwo sets of line
problems. In this case, each line problem isxa3block tridiagonal problem. The
extension of the Thomas algorithm to systems is straightod; see Section C.2.

9.4 Boundary Conditions

Mathematically, the incompressible Navier-Stokes equatiare elliptic. Physi-

cally, this implies that a change in the boundary co

nditiemselocity or pressure

anywhere in the flow field have an effect on all parts of the fldlumerically, we
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must specify a boundary condition for each velocity commbraend for pressure
at all boundaries for the problem to be well-posed. Thisisediscusses bound-
ary conditions for walls — stationary, moving, and porous #4d &or inflow and
outflow boundaries.

9.4.1 Wall boundaries

We will consider wall boundaries at the top and bottom of a diongj = %, | =
jmax+ 3)-

The most important feature of walls in viscous flow is that ¥eéocity difference
between the wall and the fluid adjacent to the wall is zeros less clear what the

correct boundary condition is for pressure. For this, wduata the equation for
momentum normal to the wall at the wall:

ov_ o) 0(F) 0P 1 (o o

ot ox dy  dy Re\odx2 0y?
Becausal andv are zero on the wall for akt andt, the first two terms drop out, as
does one term in the Laplacian, leaving

a (V) oP 1 9%

dy 9y Redy

Becauser is zero at the wall, we can approximatéy a Taylor series expansion

with no constant term:
ov

2 92y
szw y

0 20y?

Therefore,
a (V)
ay

zZy(d—v)z L0 ()

Y/ y—o

which is zero at the wall. Alsog—‘)j - —% — 0 at the wall. While%’ is not neces-

sarily zero, in practice it is typically very small, espdlgidor straight walls, so we

can use
oP

ady
as an excellent approximation for the pressure boundargiton at the wall.

0
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9.4.2 Stationary walls

For stationary walls, both the normal and tangential vé&joaie exactly zero. This
means that, for a wall gt= % we can set values in ghost cells using

Uo = —Up
Vio = —Vi1 (9.7)
Po = +R1

9.4.3 Moving walls

For moving walls, the normal velocity is zero and the tanggnelocity matches
the wall velocity. This means that, for a wall pt= % we can set values in ghost
cells using

Uo = Z2Uyal—Ui1
Vio = —Vi1 (9.8)
Ro = +R1

9.4.4 Porous walls

For porous walls, we will assume that the tangential veyasizero and the normal
velocity is given. This means that, for a wall pt= % we can set values in ghost
cells using

Uo = —U_

Vio 2v(X,0) — v 1 (9.9)
Ro = +PR1
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9.4.5 Implicit boundary condition implementation

If we construct the tri-diagonal system for tifecolumn, we need to hawdJ; o and

OUj jmaxtr1- The implicit BC implementation can be used to relate thesmtities

to dU; 1 and AU, j,... respectively. As with the energy equation, we can use this
information analytically to eliminate the extra unknowmnssulting in a system of
jmax block equations) or we can add extra rows to the system oftieaqusgresulting

in a system ofjmax. 2 block equations).

9.4.6 Inflow boundaries

For inflow boundaries, we can specify the flow veloaity, vi,. The pressure gra-
dient will again be given by momentum considerations underassumption that
the flow is fully-developed at the entrance. We will assuna ihflow is from the
left of the domain, so the-momentum equation is the relevant one:

du o) owy_ P 1 (d% o
ox2 ~ gy?

at = ox ay x Re

Because the flow is fully developed, the cross-flow veloeis/zero. Also, variation
of uin the stream-wise direction can be neglected for this chisen

oP 1 9%u

dxin  Redy?
The right-hand side of this expression can be evaluatedraithing the prescribed
boundary values fou or the interior values at= 1. The former is actually more
convenient, especially for implicit application of boumgaonditions, because this
eliminates the dependence of the ghost cell pressure aiointelocities. In either
case, we have

Upj = 2Uin— Uy
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Vo,j = —Vij (9.10)
oP
Poj = Prj—OAx—
0. = OXin
For implicit boundary condition application and assumihgt®y j is independent
of u, we can derive expressions relating the change in valudwighost cells to
those in the interior as we did for the wall boundary cases.

9.4.7 Outflow boundaries

For outflow boundaries, we can specify the presByigand assume fully-developed
flow (no stream-wise velocity gradient). These conditiomsatually quite reason-
able. We often want to control the back pressure for inteftoals, and a flow that is
not fully-developed at the exit may in fact be incorrect catapionally, because the
boundary may be affecting the solution in the interior rath@n simply allowing
fluid to leave the domain.

These conditions imply that

uimax+17j = uima)@j
VimactLi =  Vimax] (9.11)
P'max+17j = 2P0Ut - P'max7j

The implicit version of Equation 9.11 is

9.5 Outline of Navier-Stokes Code

o Do one Output
| 2 _
Initialize time step Converged? v Solution

N

Initialize

Set boundary conditions
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Set parameters (Re, At, etc)
Set geometry

Set initial condition

Set ghost cell values

Do one time step

Compute flux integral everywhere

for each |j I Line solves along j-lines
Set up LHS for current |
Set up implicit BC for current j
Do block tri-diagonal solution
I Can overwrite flux integral with result
end for

for each i I Line solves along i-lines
Set up LHS for current i
Set up implicit BC for current i
Do block tri-diagonal solution
I Can overwrite flux integral with result
end for

Compute norms of change in solution and update solution
(including optional over-relaxation)

Set ghost cell values



Appendix A

Glossary

amplification factor The ratio of solution magnitude at consecutive time steps as
a function of wave number (equivalently, wave length). Usedetermining
stability of fully-discrete schemes for PDE’s. Derived lwthe assumptions
of linearity and periodic boundary conditions.

banded periodic matrix A matrix of sizeN whose entries along each diagonal
with (i + j) %N constant are the same. Such a matrix arising naturally from
the spatial discretization of a PDE with periodic boundargditions.

basis function In the finite-element method, a function defined within thanity
of a given vertex in the mesh, nearly always with a value ofairibat vertex
and zero at all other vertices. To determine the value of thetisn for a
finite element problem at a given location, one sums the ittion from all
basis functions at that location.

CFL number A non-dimensional measure of time step, generally usediovec-
tive problems and defined as CEL%.

conservation of difficulty A law that states that, given two different ways of doing
something, each is equally difficult. The only known exceipsiare the result
of someone applying Extreme Cleverness to make one of thengimpler.

convergencel. Obtaining a single numerical solution that is an exaetady so-
lution to the fully-discretized system of equations undedg. 2. The final
result of a mesh refinement study: a solution which is for ficatpurposes
free from discretization error.

97
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debugging Finding and eradicating all errors in your program. Bug Buypically
begin with a failed validation or verification test case. 8ks® validation and
verification.

discretization Converting a PDE into a coupled system of algebraic equsifion
the unknowns at particular points in space and possibly. thiso, the system
of algebraic equations itself.

discretization error The error introduced by approximating a continuous sotutio
by a finite, discrete set of values.

explicit A time advance scheme in which no data at the new time levebjsired
to advance the solution in time.

fully-discrete form A discretization of a PDE in both time and space.

ghost cell A fictitious cell added outside the computational domaindase in ap-
plying boundary conditions.

implicit A time advance scheme in which data at the new time liswelquired to
advance the solution in time.

linear A PDE is said to be linear if the coefficients of the PDE do nqietel on
the solution of that PDE.

mesh refinement study Determining, by use of successively finer meshes, whether
the discretization error in a numerical solution is accelytamall.

modeling Deciding how to mathematically represent the physics obalem “just
simply enough”, so that the mathematical representatieesgphysically re-
alistic solutions without requiring excessive computeiotgces.

periodic boundary conditions Boundary conditions that enforce periodicity on
the solution by requiring that flux leaving one side of the pomational do-
main immediately re-enter on the opposite side.

semi-discrete form A discretization of a PDE in space only. Very useful for anal-
ysis, but not typically applied numerically.

stability A numerical scheme is said to be stable if the solution doesgyraw
without bounds.
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stationary A PDE is said to be stationary if its coefficients do not vartimne and
space.

test function In the finite element method, a local function with propexsanilar
to the basis functions, used to (analytically) multiply wution en route to
discretizing the governing equations.

time accurate A scheme is said to be time accurate if the unsteady soluttons
produces are at least first-order accurate in time. For prabwhere we are
interested only in the steady-state solution, time aceuragthods are often
not a good choice.

validation Selecting, running, and interpreting the results of a seri¢est cases to
demonstrate that the physical models in a program are atéefqua problem
or class of problems. In other words, did we code the right§BDE’s? See
also debugging and verification.

verification Selecting, running, and interpreting the results of a sasféest cases
to demonstrate that a program correctly implements thefeatn its design
— i.e., confirming the correctness of a program. In other wpdbes the
code correctly solve the PDE’s? See also debugging andatialid
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Appendix B

Some Mathematical Concepts Useful
for CFD

B.1 Classification of PDE’s

Second-degree patrtial differential equations — those whoghest derivative is
a second derivative — are traditionally classified as edljgtarabolic, and hyper-
bolic, just as conic sections are in analytic geometry. Aegosd-order linear PDE
with constant coefficients in two dimensions can be written a
9°T _0°T _o°T T aT
A B C =f|—=—,—.T
0x2+ [7‘xc9y+ ay?2 <c9x’c9y’ Y )

This PDE is considered to be

elliptic <0
parabolic ifB°—4AC =0
hyperbolic >0

B.2 Taylor Series Expansions

A smooth function in one dimension can be expanded about dirg gy into a
Taylor series as follows:

T (x—x)? &T  (x—x)®

TO0 = T00)+ 51 (60) (x—%0) +

101
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k . k
+(3NT< (0) X k!XO) +0((x=x0)H) -

A similar expansion can be written in two dimensions:

T(xy) = T(X,Yo)+ or (X0,Y0) (X—Xo) + g—; (X0,Y0) (Y —Yo)

1704
0°T (x—x0)® 92T 0°T (y—Yo)?
a2 (%0, Y0) > ax Jy (X0,Y0) (X—Xo) (Y —Yo) + e (%0, Yo) >
k KT (k—j)jt - j i
#ot 3 g o3 g b (ol 0 ()

B.3 Eigenvalues, Eigenvectors, and All That

Eigensystems appear in several places in CFD analysigdimg stability analysis,
analysis of PDE systems with multiple unknowns, and anslykiterative methods
for solving large systems of linear equations.

Learning Objectives. Students will be able to:

¢ Define eigenvalue and eigenvector.

e Describe how to diagonalize the system of coupled ODE’srayiffom a
one-dimensional periodic spatial discretization of a tidependent PDE to
obtain a system of uncoupled ODE’s.

B.3.1 Basics about eigensystems

This section is intended to give without proof some basitsfatout eigenvalues
and eigenvectors of matrices.

The right eigenvector¥y and the eigenvaluek of a square matriM of sizek are
defined as follows:

MXy = Ak (B.1)
This system of equations gives each eigenvector to withonatant factor; clearly,

each eigenvector can be multiplied by a constant and stikfgaEquation B.1.
Similarly, one can define left eigenvectors (which are roat@es) by

YkM = YAk (B.2)
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where theAy are the same in each case. The eigensystem of a matrix isosaed t
complete if

e The matrix hak distinct eigenvalues, or

e For any eigenvalue that repeatsmes, there are distinct orthogonal eigen-
vectors.

B.3.2 Proof that the coupled system of ODE’s arising from a
periodic discretization in one space dimension really can
be de-coupled

Theorem: A banded periodic matrix §...,a »,a 1,ap,a1,ay,...) Of Size jax
(rows numbered from+ 1) has a complete eigensystem. The right eigenvectors
are of the form

. . T
Xk: (1e|(n<92|(PK e('fl)l(PK e('marl)l(/‘<> (83)

where g = 27K /imax for an integer0 < k < imaxand I = v/—1. In general, the ith
element of the vector i$'eV' %, The eigenvalues are

A= zajejlw (B.4)

Proof:

Note that Equations B.3 and B.4 define a set of vectors an@sdhat

are the right size to be a complete eigensystem. We merely toee
show that each pair really is an eigenvector-eigenvalue faat is,
that BpXi = AXk. Substituting the expressions above, we have, for a
general vector element

Bp(...,a 2,8 1,80,a1,8,...) % = ---+a2exp((i—3)la)+a 1exp((i—2)l @)

+agexp((i — 1)l @) +azexp((i)l @) +azexp((i + 1)1 @) -

= V(S ajexp(jl @)
= AX
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The wrap-around cases at the ends of the vector are alsactoFer
example, consider the first element&yx:

. a_ze(imarz)l(ﬁk + a_le(imarl)l(pk Tagt aleI % a2e2I ... _
-+ a-2eXP(imad ¢) €XP(—2l ) +-a-1exp(imad @) exp(—I &)
Lagtae o aP k... —
age d?4a e ragtae Rt ae® % = AX(1]

where the last transformation is possible because:
. . 27K
imax® = imax—— = 27K
Imax
and

e?™l — cos 2tk + | sin2mk = 1
Q.E.D.



Appendix C

Solution of Tri-Diagonal Systems of
Equations

C.1 The Thomas Algorithm

A system ofimax €quations requires, in generﬁ],(i?nax) operations to solve. How-
ever, if the matrix on the left-hand side of the equationiisli@gonal in form, we
can solve the system using the Thomas algorithm, which resj@nly O (imax)
operations.

Consider a general tri-diagonal system of equations

b1 o X1 r
a b o Xo ro
az bz c3 X3 rs
a by g X4 ra

Aimax—1 bimax—l Cimax—1 Ximax—1 lima—1

L Qi max bimax | Ximax Fimax

The Thomas algorithm uses Gauss elimination and back suiiisti to solve these
equations, taking advantage of the structure of the matriavibid unnecessary
work. The following pseudo-code (in no particular langUagieows how this is

done. C and Fortran code for this algorithm is available @xcthurse web site.

I First use linear combinations of rows to eliminate
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I all the a's and scale each row to make all the b's
I equal to 1.
for 1 =1, imax—1
C < Ci/bi
I < ri/bi
bi «
1 I This line has no effect

biy1 < biy1—caii
lit1 < M1 —Tlidi+1

Q1
0 I This line has no effect
end for
Fimax ¢ Timax/ Bimax
bimax —
1 I This line has no effect
I Now back-substitute, eliminating the c's. After this
I pass the r’s will have been replaced by the X'S.
for 1 = imax—1, 1 by -1
r < ri—rix1G
C <
0 I This line has no effect
end for

C.2 The Thomas Algorithm for Systems

The Thomas algorithm can be easily extended to systems atieqa as well. The
only subtle point here is that, instead of dividing by a matwe need to left-
multiply by its inverse.

Pseudo-code for solving the system gfx block equations of the form
AX 1+BiX+CiXn=R

follows; as for the scalar case, C and Fortran code is availai the course web
site.

I First use linear combinations of rows to eliminate
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I all the A’'s and scale each row to make all the B's
I equal to .
for 1 =1, imax—1

G + B

R « B 'R

Bi « | I This line has no effect

Bi+1 <+ Biv1—A+1G
Ri1 < Ria—AR

A < 0 I This line has no effect
end for
Rimax A Biimjé;x Rimax
Bijax < | I This line has no effect
I Now back-substitute, eliminating the C's. After this
I pass the R’s will have been replaced by the X’s.
for i = imax—1, 1 by -1

R + R—CiR1

C <« 0 I This line has no effect

end for
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Appendix D

Programming Guidelines

There are two purposes for these guidelines. First, thdymwake your lives easier
as you program and debug, both in this class and afterwardsond, they will
make my life easier as | mark your programming assignmeragrario figure out
where that one last bug is that you couldn’t quite locate.

Indent loops, if-then-else, case statements, etc. So that you can read your
code and locate at a glance the end of a loop or an if-then4edseng your code
properly indented is invaluable. If you use emacs as yourddior, you're set:
emacs will automatically indent code for you — just hit theBrkey; this is the
way the samples were indented. If not, use at least two sd@edra indentation
for each level of loop or conditional nesting.

Comment your code Commenting is essential if you're going to ever figure out
again what that complicated arithmetic expression is ssgdo calculate, and so
that you won’t change that line of code that is correct butntertintuitive. You
needn’t go overboard. Provide a comment that describesutpogpe of each sub-
program and then add comments within subprograms to desttréomajor things
that it does.

Write modular code In the long run, you'll save yourself a tremendous amount
of programming time and effort if you write modular code, dese you'll be able to
directly re-use old pieces of code. For example, the exatt$a-diagonal equation
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solver can be used in this course to solve Poisson’s equ#tiemeat equation, and
the energy equation.

Another advantage to writing modular code is that it helps yarrow down the
location of errors in the program more easily.

Finally, the thought required to write modular code is k&b help you organize
your understanding of the physics and/or numerics of a probivhich will help
you write correct code.

Declare and type all your variables Explicitly declare your variables and their
type (real, float, int, double precision, etc). This is a ficat piece of advice
designed to reduce your debugging time. If you accidentgihe tume instead
of time as a variable name, you would like the compiler to tell yos thstead of
having to find out the hard way. C compilers will do this autticadly. In Fortran,
either use an appropriate compiler flag (oftar) or addimplicit none to the
beginning of each subprogram.

Use every available compiler warning flag Another piece of practical advice:
ask your compiler to be very picky in providing warnings abgaur program.
Most compilers will happily tell you that all sorts of legdlihgs are questionable
(and possible incorrect). It's much easier to find thesersrab compile time. Af-
ter years of following this advice, | still occasionally geuseful and unexpected
warning from a compiler that | haven’t run my mesh generatiode through in a
while. To find out how to do this, check your compiler's manwegher on paper or
electronically.

D.1 Sample Programin C

#include <assert.h>
#include <stdio.h>
#include <unistd.h>
#include <math.h>

#define NMAX 256
double dTime = O;



D.1. SAMPLE PROGRAM IN C

111

/ = Compute the exact solution to the problem as a function of X an
static double dExact(const double dX, const double dTime);

/= Print out the computed solution, the exact solution, and the

the computed solution. */

static void vPrintSoln(const double adSoIn[NMAX], const i nt iN)

{

}

double dDX = 1./iN;

int i;

for (i = 0; i <= IN; i++) {
double dX =i = dDX;

printf(“%5d %10.6f %12.8f %12.8f %12.8g\n”, i,
dX, adSoln[i], dExact(dX, dTime),
dExact(dX, dTime) - adSoln[i]);

}

/= Compute the flux integral for all control volumes. * [
static void vComputeResidual(const double adSoln[NMAX],

{

int i,

for (i = 1, i < NMAX; i++) {
adResid[i] = 0;

}

/ = Interior scheme */

for (i = 1; i < NMAX-1; i++) {
double dFlux = ..;
adResid[i] += dFlux;
adResid[i-1] -= dFlux;

}

/ * Boundary conditions */
/ = At left boundary * [
adResid[1] += ...;

/ = At right boundary */
adResid[NMAX-1] -= ..,

const int iN, double adResid[NMAX])

dT.

error in



112

APPENDIX D. PROGRAMMING GUIDELINES

}

/ = Performs a simple first-order explicit time march.
static void vTimeMarch(double adSoln[NMAX], const int iN,
const double dDT)

{
double adResid[NMAX];

int i;

/ = First compute the flux integral */
vComputeResidual(adSoln, iN, adResid);

/ = Advance the solution in time */
for (i = 1; i < IN; i++4)
adSoln[i] += adResid[i] * dDT;

/ = Update the global simulation time. */

dTime += dDT;
}

/* Set up initial condition */
static void vinit(double adSoln[], const int iN);

int main(int iNArgs, char * apcArgs|])
{
int iIN = 40, iINTimeSteps;

double dTMax = 1., dDT, dCFL;
double adSoIn[NMAX];

vinit(adSoln, iN);
INTimeSteps = 20;
dDT = dTMax / iINTimeSteps;

fprintf(stderr, “Running %d time steps at dt = %6.4f.\n”,
iNTimeSteps, dDT);
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fprintf(stderr, “Total time is %6.4f\n", dTMax);
fprintf(stderr, “Spatial resolution is %6.4f (%d points)\

{
int iStep;
for (iStep = O; iStep < INTimeSteps; iStep++)
vTimeMarch(adSoln, iN, dDT);
}
vPrintSoln(adSoln, iN);
exit(0);

D.2 Sample Program in Fortran

program main

implicit none

integer NMAX

parameter (NMAX = 256)

double precision Time

integer iN, INTimeSteps, iStep

double precision TMax, DT, Soln(NMAX)

IN = 40
TMax = 1.

call Init(Soln, iN)
INTimeSteps = 20

DT = TMax / iINTimeSteps
write(6,10) INTimeSteps, DT

write(6,20) TMax
write(6,30) 1./iN, iN

113
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format(“Running”,16,* time steps at dt =",F7.4)
format(“Total time is ",F6.4)
format(“Spatial resolution is”,F7.4,“ (",I5," points)

do iStep = 1, INTimeSteps
call TimeMarch(Soln, iN, Time, DT)
enddo

call PrintSoln(Soln, Time, iN)
stop
end

Compute the exact solution to the problem as a function
double precision function Exact(X, Time)

implicit none

integer NMAX

parameter (NMAX = 256)

double precision X, Time

Exact = ...
return
end

Print out the computed solution, the exact solution, and
the computed solution.

subroutine PrintSoln(Soln, Time, iN)

implicit none

integer NMAX

parameter (NMAX = 256)

double precision Soln( +), DX, X, Exact, Time
integer iN, i

DX = 1./iN
doi =1, iN
X =1i » DX
write(6,10) X, Soln(i), Exact(X, Time),
Exact(X, Time) - Soln(i)
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enddo
format(15,F10.6,2F12.8,G12.8)
return

end

Compute the flux integral for all control volumes.
subroutine ComputeResidual(Soln, iN, Resid)
implicit none

integer NMAX

parameter (NMAX = 256)

double precision Soln( *), Resid( ), Flux
integer iN, i

do i = 1, NMAX
Resid(i) = 0
enddo

Interior scheme
do i = 1, NMAX-1

Flux = ...

Resid(i) = Resid(i) + Flux

Resid(i-1) = Resid(i-1) - Flux
enddo

Boundary conditions

At left boundary

Resid(1) = Resid(1) + ...

At right boundary

Resid(NMAX-1) = Resid(NMAX-1) - ...

return
end

Performs a simple first-order explicit time march.
subroutine TimeMarch(Soln, iN, Time, DT)
implicit none

integer NMAX

parameter (NMAX = 256)
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double precision Soln( *), DT, Resid(NMAX), Time
integer iN, i

First compute the flux integral
call ComputeResidual(Soln, iN, Resid)

Advance the solution in time
doi =1, IN

Soln(i) = SolIn(i) + Resid(i) * DT
enddo

Update the global simulation time.
Time = Time + DT

return

end

Set up initial condition
subroutine Init(Soln, iN)
implicit none

integer NMAX

parameter (NMAX = 256)
double precision Soln( *)
integer iN

return
end

D.3 Painless Array Manipulation

The most common data structure (in fact, often the only datactsire) in CFD
programs is the array. Therefore it's important that you ble & declare arrays
properly and to pass them as arguments to subroutines. Thaiésdd this differ in
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C and Fortrah, but the idea is the same.

D.3.1 Array Declaration

Suppose that you need to store a solution on a finite-volunsi et has 24 vol-
umes in the-direction and 36 volumes in thiedirection. This data should be stored
in an array of size 26& 38, to allow room for ghost cell data. | personally like to
number cells so that the ghost cells start at 0, so | wouldadecthis array in C as:

double solution[26][38];
or more likely:

#define ISIZE 24
#define JSIZE 36

double solution[ISIZE+2][JSIZE+2];

| prefer the second choice because the symbolic condt@iig andJSIZE can
be re-used in other places where these values are needetieamésh size can be
changed easily by redefinin§IZE andJSIZE .

In Fortran, | would write
double precision solution(0:25,0:37)

Fortran 77 has no portable way to define symbolic global @mst but many com-
pilers allow you to use preprocessor directives as I've dortke C example. An-
other non-standard solution is to declare sizePARANS in an include file, and
include that file into every routine that needs it. This i©giessibly non-portable,
but most (all?) Fortran compilers allow includes now.

II'll use Fortran 77 examples throughout, because Fortraro@tpilers have still not taken over
completely and because | have never used Fortran 90 pelssonal
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D.3.2 Passing Arrays as Arguments to Subroutines

Once you have an array that contains your solution, youdbhe pass it to a variety
of subroutines for initialization, flux calculation, sal update, output, etc. This
is a delicate subject in C, where you must know the size of tteyan advance;
this is another place whet&lefine -ing array sizes makes life simpler. In C:

void Resid(const double solution[ISIZE+2][JSIZE+2],
const int IMax, const int JMax,
double residual[ISIZE][JSIZE])

Notice that theresidual  (which is calculated only for the interior cells) has a
different size than the solution in this example.

In Fortran, the same effect is achieved differently.

subroutine Resid(solution, IMax, JMax, ISize, JSize,
residual)

integer IMax, JMax, ISize, JSize

double precision solution(0:1Size+1,0:JSize+1)

double precision residual(ISize,JSize)

Note that Fortran does allow the size of an array passed tbrastine to be deter-
mined at run time (as an argument to the subroutine).

D.3.3 Passing Array Slices as Arguments

Suppose that you want to send only part of your array (a siingeof data, say)
as an argument to a subroutine. You will see an applicatighisfwhen we get to
approximate factorization (see Secti®?). C and Fortran each allow you to pass
an array slice, but it’s a different slice, depending on #rguage. In C, you would
write:

2Technically, you can avoid this by using an array of pointerslouble instead of a two-
dimensional array aflouble . However, this requires that you allocate the memory blboek ¢ach
of those pointers points to, which is annoying and erromprdf you understand this paragraph and
want to try it that way, go ahead and experiment.



D.3. PAINLESS ARRAY MANIPULATION 119
FuncNeedingConstantlSlice(solution[i]);

whereFuncNeedingConstantlSlice takes a one-dimensional array of dou-
bles as an argument.

In Fortran, on the other hand, you would pass an array skeethiis:
call FuncNeedingConstantJSlice(solution(1,)));

The difference between how the two languages handle paasiag slices arises
from the order in which elements of multi-dimensional asraye stored. To pass
an array slice in the “non-native” direction, you must copyatto a temporary array
and pass that temporaty.

D.3.4 Higher-dimensional Arrays

Let's suppose that you want to store three 3 matrices for every cell in each
column of your mesH. The handling of such an array is just more of the same that
we've done before. In C, you might write:

double LHS[JSIZE][3][3][3];

This order makes it possible to refer to a 3 block by writingLHS[j][K] orto
a row in the block tri-diagonal matrix d$HSJj]

In Fortran, one would write
double precision LHS(3,3,3,JSIZE)

and refer to a % 3 block by writing LHS(1,1,k,j) or to a row in the block
tri-diagonal matrix a& HS(j) .

This reversal in the order of indices is only likely to be amsihg if you switch back
and forth between languages often.

3Fortran 90 introduced a new interface for array slicing iRtotran that does this copying for
you.

4You might want to do this to solve a block tri-diagonal systehequations when simulating a
coupled system of PDE’s.
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D.4 Most Popular CFD Programming Errors

Mis-sized arrays. A very common error in CFD programming is to size arrays
slightly too small. The most common form of this error is toget to allow space
for ghost cells. Remember: 100 cells in the interior meansnged 102 cells total.

Off-by-one loop errors. Starting too late or ending too soon will leave some data
unchanged. Starting too early or ending too late may causdo/overwrite data
other than the array you intended to change.

Array size mismatches. One of the most baffling bugs I've seen in a CFD code
was caused by having an array declared as

double name[332][3];
and passed as an argument to a routine that wanted
double name[322][3];

The size difference in arrays matters. This is a really geadon to use symbolic
constants (eitherdefine ’sin C or the equivalent in Fortran).

Not initializing variables. Don’t count on an uninitialized variable having a sane
value, because it may not. Even if it does, it may still notleright value. Most
compilers will catch the more obvious cases of this, but HoFar example, if you
accumulate a flux integral by adding each new piece of thgtat¢o the total you
already have, you need to be sure to initialize the totaleeto pach time before
you start.

Sign errors. These are extremely common. | often find myself thinking, t'Bu
that signhasto be right!” I've learned over the years that it's to my adizge to
change signs that are in question and run the code againe dtle’s behavior
improves, then the sign was wrong, and | have to re-calibrgtérain so that I'll
understand why. This approach is generally a lot fasteastlfor me, than re-
verifying analytically what the sign should have been, egly since I've been
known to derive the same wrong answer more than once in a row.



Appendix E

Validating CFD Programs

Once you have written a CFD program that runs to completlmrgetis essentially
zero chance that it is correct without further testing andudging. Inevitably,
there will be errors. The validation phase of a CFD projectsists of extensive
testing to verify that the computer program actually pragucorrect solutions to
the mathematical model of the physical problem.

Generally, a good validation plan will begin by verifyingatithe program correctly
computes flux integrals, then move on to verify boundary d@ants, time advance,
and convergence properties of the code.

During the course of the term, several modeling and vabaedissignments will be
given. This handout is intended to give you general inforomeétbout what | expect
you to do for each of these assignments.

For each assignment, the description of a physical probfeftuid mechanics or
heat transfer will be distributed. You will have a week to sioler what physical
phenomena are important in solving the problem and to deelids test problems
you would use to validate a program written to solve the mobl Bring with

you to classtwo copiesof your write-up for the problem, one to submit at the
beginning of class and one to refer to during group discassfahe problem in
class. After you have discussed physical modeling and atiid for the problem
in small groups, each group will submit their combined ressahd we will discuss
the results in class. Marks will be assigned both for indigidand group results.

INote that | will pick the groups for these discussions, amdgtoups will be different for each
assignment.
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The following class period, | will hand out a summary of thasd’s combined
wisdom on modeling and validation for the problem.

Your write-up should consist of two sections: modeling, aatidation protocol.

E.1 Modeling

In this part of your write-up, you should describe which ghgsphenomena are
relevant for solution of the problem and which can be safelyiected. This is of
course a judgment call in many cases, so sentence or twéyjogtiyour choices

may go a long way to convincing others that you are correct.eikample, for the

tire incinerator problem discussed during the first weekla$s, you might have
something like:

e Viscosity is important to correctly simulate convectiorahgansfer and flow
separation.

e The flow will likely be turbulent despite low flow velocity baase of the
large size of the physical domain.

e The flow will be incompressible in the sense that Mach numBeces will
be unimportant, but density variations will still be sigoént because of large
differences in temperature.

e Heat release due to combustion must be included, as it witlidate the
energy balance of the flow.

e Resolution of the chemical reaction zone will be assun@do be necessary;
instead heat release will be modeled using a volumetricceaierm.

There are doubtless many others that could be added, bufullgpgou get the
idea. | am specificallynot interested in details at the level of “I would use the
k — ¢ turbulence model” or “Chemical kinetics would be modelemhgsates deter-
mined by Smith, Jones, and Park”. Questions such as thesdwaags difficult to
answer; | don’t expect you to spend time worrying about sugdstjons for these
assignments.
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E.2 Validation

Okay, so now you've decided what physics to simulate in thal fanogram. Now
you need to make a list of particular test cases to run to tedt ef these things.
Several points to keep in mind:

e These need not be physical flow problems; they can insteag&igried to
test as little as a single subroutine from the program.

e No test case is too simple if it checks any untested piece ydips or any
untested interaction between separate pieces of physics.

e Geometry can differ from case to case just as the flow comditoan.

For each case, a one or two sentence description of what fieetests should be
included, to make the purpose of non-obvious tests more. (3@eme general sorts
of tests that are nearly always worth doing:

e Validate your flux integrals using some prescribed initialuion with a
known flux integral.

e Symmetry checks are often useful, as are problems in whieldonension is
redundant (for example, using a 3D code to solve a 2D charovelftoblem
with multiple cells (and periodic boundary conditions) hretthird dimen-
sion).

e Sanity checks, such as checking for correct trends in theiealwith changes
in boundary or initial conditions. For example, for the fineinerator, higher
heat release from combustion should tend to increase hoihet@ture in the
incinerator and heat flux through the walls.
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Appendix F

References

Mathematics

For Taylor series, a good intro calculus book.
For Gauss’s theorem, a good multi-variable calculus book.

For help finding exact comparison solutions to PDEgyanced Engineering Math-
ematicsby Wylie and Barrett is a pretty good choice. I'm sure thee@hers that
are equally good.

Fluid Dynamics

Frank White’s textbooks are both very godduid Mechanicsat the undergraduate
level andViscous Fluid Flowat the graduate level.

Batchelor’sintroduction to Fluid Mechanics also an excellent graduate-level text.

Computational Fluid Dynamics

Numerical Computation of Internal and External Flovey Charles Hirsch. In two
volumes. A great reference for compressible flow methodsesb® cover a lot
about incompressible flow. I'd probably pick this as my saference if | had to
pick just one.
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Fundamentals of Computational Fluid Dynamity, Lomax, Pulliam and Zingg.
Second Edition, 2003. Great for modern analysis (better Araderson, Tannehill,
and Pletcher, as far as I'm concerned). This is the one I'dtaddirsch if | were
allowed to pick two.

Computational Methods for Fluid Dynamicky Joel Ferziger. I've not actually
taken a close look at this book, but it's highly thought of.

Numerical Heat Transfer and Fluid Flgwy S. V. Patankar. | disagree with Patankar’s
choices in discretization schemes (even leaving asidesssiuinite difference ver-

sus finite volume methods). This doesn’'t mean it's a bad booleven that his
choices are incorrect.

Computational Fluid Mechanics and Heat Transfby Anderson, Tannehill, and
Pletcher. Good coverage of the basics of finite differencthats, including anal-
ysis of accuracy and stability. Other parts of the book ari dabed.



