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Chapter 1

Intro to CFD

Strengths of Computational/Experimental/Analytic Fluid
Dynamics

1.1 Modeling

Consider the flow inside a commercial tire incinerator (picture shown in class).
Ground-up tires are dumped in and burned. Gases pass by several heat exchang-
ers to boil and superheat water for power generation. Because of the combustion
conditions, there is a significant amount of nitrogen oxides(NOx) in the flue gases,
which is environmentally unacceptable. A company in Illinois (Nalco Fueltech)
makes a living by sellingNOx reduction systems for incinerators like this one. They
need an accurate CFD model that can be easily applied to a variety of incinerators
rather quickly so that they can designNOx reduction systems. In particular, they
must predict temperature, velocity, andNOx concentration both with and without
their emission reduction system for several operating conditions. They must do this
quickly (a couple of weeks at most).

1



2 CHAPTER 1. INTRO TO CFD

Key features of the physics: Governing equations that include most of these effects:

Global continuity:

∂ρ
∂ t

+∇ · (ρ~u) = Sρ

Momentum:

∂ (ρ~u)
∂ t

+∇ ·
(

ρ~u⊗~u+P~I −~τi j

)

= Smom

Energy:

∂E
∂ t

+∇ · (~u(E+P)) =
∂Q
∂ t

+∇ · (k∇T)+qrad+∇ · (~τi j ·~u)

Species continuity:

∂ρi

∂ t
+∇ · (ρi~u) = Sρi

Turbulence closure model

Droplet transport and evaporation model.

Total: Perhaps twenty PDE’s with a wide range of time scales (from very fast chem-
ical reactions to viscous diffusion and convection scales).

Including all of this physical detail in a computer model would make for a tremen-
dously complicated and probably tremendously slow program. The essence of mod-
eling is to balance physical fidelity against human and computer resources available.
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Generally, we use either the simplest model that gives a reasonable answer or the
most complex model that can be programmed and run with available resources.

Assume for this problem that:

• Combustion can be modeled as a distributed heat source

• Sprays have a negligible mass, momentum, and energy effect on the flow

• Chemistry ofNOx reduction can be de-coupled (solved separately,a posteri-
ori)

• Neglect radiative heat transfer

This reduces the mathematical description of the problem to:

Global continuity:

∂ρ
∂ t

+∇ · (ρ~u) = 0

Momentum:

∂ (ρ~u)
∂ t

+∇ ·
(

ρ~u⊗~u+P~I −~τi j

)

= 0

Energy:

∂E
∂ t

+∇ · (~u(E+P)) = ∇ · (k∇T)+∇ · (~τi j ·~u)+
∂Q
∂ t

Species continuity:

Removed from main model

Turbulence closure model

Droplet transport and evaporation model.

Chemical reactions in theNOx reduction process.

Total: Seven PDE’s (with 2-eq turbulence model) plus a de-coupled set of PDE’s
to be solved separately for the droplets, etc, once velocities and temperatures are
known.

Modelingis the process of separating important from unimportant physical effects
in the physics of the problem to arrive at a mathematical model that is not too
complex.
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1.2 Discretization

Modeling gives a system of PDE’s to be solved. Only very rarely can we obtain
an exact solution to these PDE’s. Before we can compute a solution, we first must
decidewherewe want to solve the equations. This requires us to generate amesh
containing a finite number of locations where we will solve the PDE’s. Mesh gen-
eration is a topic that we will discuss in Mech 511.

Once we have a mesh, we need to develop a representation of thePDE’s on this
mesh, including a time-evolution scheme. There are three main families of tech-
niques for this:

Finite difference. Solution is represented by point values at mesh points. Replace
each differential term in the PDE by a corresponding finite difference approx-
imation. (See Figure 1.1)

i i+1 i+2i-1i-2

dx

Figure 1.1: Schematic representation of finite difference approximation to a contin-
uous solution.

• The original approach for CFD.

• Easy to get high-order discretizations (use high-order finite differences).

• Doesn’t conserve mass, momentum, and energy exactly.

• Impractical for unstructured meshes.

Finite volume. Solution is represented by control volume averages. Write the
PDE’s in volume integral form. Discretization based on evaluation of vol-
ume integral over small control volumes. (See Figure 1.2)

• Conserves mass, momentum, and energy exactly.

• Applicable to any mesh topology w/ appropriate control volumes.
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dx

i i+1 i+2i-1i-2

Figure 1.2: Schematic representation of finite volume approximation to a continu-
ous solution.

i i+1 i+2i−1i−2

dx

Figure 1.3: Schematic representation of finite element approximation to a continu-
ous solution.

• Not too hard to get high-order discretizations (locally construct high-
order polynomial representation of solution).

Finite element. Solution is represented by localbasis functions. Multiply by a
test functionand integrate. Discretization based on evaluating integrals with
given test and basis functions. (See Figure 1.3)

• Applicable to any mesh topology w/ appropriate test and basis functions.

• Lots of theoretical results showing convergence and stability of method.

• Not too hard to get high-order discretizations (high-orderbasis and test
functions).

• Conservation of mass, momentum, and energy is difficult, butpossible.

1.3 Accuracy and Stability

The finite representation of the PDE is not exact; somediscretization erroris in-
troduced regardless of how precisely we solve the discretized equations. Before we
bother coding up a scheme, we want to analyze its accuracy so that we’ll know what



6 CHAPTER 1. INTRO TO CFD

we’re getting. The analysis gives an idea about how much difference there will be
between our discrete solution (on a computer with infinite precision) and the exact
solution to the PDE. We also find out how the discretization error will change as we
add mesh points.

Also, for unsteady problems, we analyze the time-evolutionscheme to determine
its stability. That is, we determine whether errors in the solution will grow expo-
nentially in time or remain bounded.

1.4 Validation

Then we write a program to solve the discrete problem. We compile it. It doesn’t
compile the first few times. Finally it does. We run it. It crashes. Finally it runs and
gives an answer. Should we believe this answer? No. Absolutely not. The output
could be literally anything, from Egyptian hieroglyphics to the Martian alphabet;
these are about as likely as getting the right solution the first try, in my experience.
No CFD program should be considered correct until it has beenthoroughly tested
and debugged.

There are two interrelated parts to fixing a broken CFD program. Validation tells
us whether the solutions we get for a series of simple test cases are correct.Debug-
ging is the process of identifyingwhya program failed a test case and fixing it. A
validation plan should begin with ridiculously simple testcases and work up to test
cases that are as near as possible in complexity to the problem to be solved.

• Begin by testing code at the component level. While it’s possible to debug
1000 lines of code (about the limit of program size for this course, typically)
in one big piece, it’s much easier to work with much smaller chunks. Basi-
cally, if you can define a task that a chunk of code is supposed to do, you can
define a test that confirms that it was done correctly. Writingthe testfirst is
not necessarily a bad idea — then you’ll know for sure when you’re done.

• When testing the entire code by solving flow problems,

– Each test case should have a known solution, whether analytic, experi-
mental, or computed by a previously-validated program.

– Each test case should ideally test a single new part of the physics or a
single new interaction between already validated parts. This approach
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minimizes the number of places one must look for errors when the pro-
gram gives an incorrect result for a test case; this more thanoffsets the
time consumed in running more test cases. While it is nearly impossi-
ble to test only one thing with each case, the closer we come todevising
such a plan, the easier it will be to validate and debug our program.

– Table 1.1 gives a partial listing of test problems worth considering for
the tire incinerator problem.

Case Physics Change in
physics

1 Inviscid terms only, no heat addition, no flow ini-
tial condition in a closed rectangular box (ana-
lytic solution)

2 Inviscid terms only, no heat addition, no flow
initial condition with wall, inflow, and outflow
boundary conditions (analytic solution)

Different
boundary
conditions

3 Inviscid terms only, no heat addition, uniform
flow in a straight rectangular duct (analytic so-
lution)

Non-zero
velocity

4 Inviscid terms only, no heat addition, accelerat-
ing flow in a straight rectangular duct (analytic
solution)

Velocity in-
creasing to
steady-state

n-3 Turbulent flow without heat addition in a straight
duct (experimental data)

Turbulence

n-2 Turbulent flow with heat addition in a straight
duct (experimental data)

Heat addition

n-1 Turbulent flow without heat addition in a duct
with abrupt turns (experimental data)

Flow around
bends

n Turbulent flow with heat addition in tire inciner-
ator

Combines n-2
and n-1

Table 1.1: Partial validation plan for the tire incineratorproblem.

Technically, the listing of test cases for the tire incinerator problem mixes validation
cases and verification cases. The difference between these two categories is that
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verificationensures that your program correctly implements the physicsthat you
intended it to, whilevalidationdemonstrates that your physical model comes close
enough to reality for the problem of interest.

1.5 Efficiency

Now the program works, and we believe that the physics it simulates is adequate
for our real world problem. Is the code efficient enough to be usable? Let’s say that
a run for this tire incinerator takes 20 CPU hours on the fastest machine available.
For one run, that would be fine. But in the design context, we have to check a
number of different operating conditions, which starts to get expensive. And for the
company to stay in business, we have to design an emission reduction system for
one of these things every week or so. So in this case, 20 hours isn’t good enough.
We have to go back and do one of several things:

• Simplify the physical model even more

• Simplify the discretization

• Improve the technique we use to solve the discretized equations

• Buy a faster computer

Whatever we do, we have to sure that the final solution is stillaccurate enough.

1.6 Convergence

Finally, for any problem, we need to be sure that we have adequately resolved all
of the important physical features of the flow. “Important” depends on the physical
quantities we’re after. If all we care about isNOx mass fraction at the stack outflow,
then we probably do not need to be concerned with resolving the length scales
of turbulent eddies. To know this, we need either enough experience to know in
advance how fine a mesh to use or to perform amesh refinement study. In a mesh
refinement study, we compute the solution on a series of progressively finer meshes
until the physical quantity in which we are interested stopschanging. This amounts
to an empirical measurement of when discretization error isacceptably small.



Chapter 2

Modeling Based on the Navier-Stokes
Equations

Most problems in computational fluid dynamics and computational heat transfer
hinge on solving the Navier-Stokes equations, which describe viscous fluid flow,
often in conjunction with auxiliary equations describing other physical phenomena,
like turbulence, combustion, transport of chemical species, etc. Before considering
such complicated cases, we will begin by examining the Navier-Stokes equations
in detail, including non-dimensionalizing the basic equations and deriving some
simple model problems based on that non-dimensional form.

2.1 Non-dimensionalization of the Navier-Stokes equa-
tions

First, we write the Navier-Stokes equations (including theenergy equation) in two
dimensions for the case of constant coefficients:

∂u
∂x

+
∂v
∂y

= 0 (2.1)

∂u
∂ t

+
∂u2

∂x
+

∂uv
∂y

= −1
ρ

∂P
∂x

+ν
(

∂ 2u
∂x2 +

∂ 2u
∂y2

)

(2.2)

∂v
∂ t

+
∂uv
∂x

+
∂v2

∂y
= −1

ρ
∂P
∂y

+ν
(

∂ 2v
∂x2 +

∂ 2v
∂y2

)

(2.3)

9
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∂T
∂ t

+u
∂T
∂x

+v
∂T
∂y

=
k

ρcp

(

∂ 2T
∂x2 +

∂ 2T
∂y2

)

(2.4)

+
ν
cp

(

2

(

∂u
∂x

)2

+2

(

∂v
∂y

)2

+

(

∂v
∂x

+
∂u
∂y

)2
)

Note that the momentum equations have been written in conservation-law form
by using the continuity equation. The same thing could have been done for the
energy equation, but this equation is generally solved separately, with the velocity
field already known; this makes it much less important to havethis equation in
conservation law form.

To non-dimensionalize Equations 2.1–2.4, we need reference values for length, ve-
locity, pressure, and temperature (density is fixed, so we don’t need a reference
value for density). Suppose that we choose to non-dimensionalize length byL,
velocity byuref, pressure byρu2

ref, and temperature byTref. Basically, we just as-
sume that we can find some appropriate reference valuesL, uref andTref for what-
ever problem we’re solving and that the pressure changes in the flow can be non-
dimensionalized appropriately by the dynamic pressure associated withuref. If we
do this, we can write the dimensional variables in terms of non-dimensional vari-
ables (with∗) and reference values:

t = t∗
L

uref

x = x∗L

y = y∗L

u = u∗uref

v = v∗uref

P = P∗ρu2
ref

T = T∗Tref

Substituting these into the continuity equation:

∂ (u∗uref)

∂ (x∗L)
+

∂ (v∗uref)

∂ (x∗L)
= 0

or
uref

L

(

∂u∗

∂x∗
+

∂v∗

∂y∗

)

= 0

or
∂u∗

∂x∗
+

∂v∗

∂y∗
= 0
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Substituting into the x-momentum equation:

∂ (u∗uref)

∂ (t∗L/uref)
+

∂
(

u∗
2
u2

ref

)

∂ (x∗L)
+

∂
(

u∗v∗u2
ref

)

∂ (y∗L)
=−1

ρ
∂
(

P∗ρu2
ref

)

∂ (x∗L)
+ν

(

∂ 2(u∗uref)

∂
(

x∗2L2
) +

∂ 2(u∗uref)

∂
(

y∗2L2
)

)

Dividing all terms byu2
ref/L,

∂u∗

∂ t∗
+

∂u∗
2

∂x∗
+

∂u∗v∗

∂y∗
=−∂P∗

∂x∗
+

ν
Luref

(

∂ 2u∗

∂x∗2
+

∂ 2u∗

∂y∗2

)

where of course ν
Luref
≡ 1

Re. Not surprisingly, a similar result holds for the y-
momentum equation:

∂v∗

∂ t∗
+

∂u∗v∗

∂x∗
+

∂v∗
2

∂y∗
=−∂P∗

∂y∗
+

ν
Luref

(

∂ 2v∗

∂x∗2
+

∂ 2v∗

∂y∗2

)

If we substitute the non-dimensional versions of the variables into the energy equa-
tion, we get:

∂ (T∗Tref)

∂ (t∗L/uref)
+u∗uref

∂ (T∗Tref)

∂ (x∗L)
+v∗uref

∂ (T∗Tref)

∂ (y∗L)
=

k
ρcp

Tref

L2

(

∂ 2T∗

∂x∗2
+

∂ 2T∗

∂y∗2

)

+
ν
cp

u2
ref

L2

(

2

(

∂u∗

∂x∗

)2

+2

(

∂v∗

∂y∗

)2

+

(

∂v∗

∂x∗
+

∂u∗

∂y∗

)2
)

Dividing by urefTref/L, we get:

∂T∗

∂ t∗
+u∗

∂T∗

∂x∗
+v∗

∂T∗

∂y∗
=

k
ρcpLuref

(

∂ 2T∗

∂x∗2
+

∂ 2T∗

∂y∗2

)

+
νuref

cpTrefL

(

2

(

∂u∗

∂x∗

)2

+2

(

∂v∗

∂y∗

)2

+

(

∂v∗

∂x∗
+

∂u∗

∂y∗

)2
)

What are the dimensionless parameters here?

ρLuref cp

k
=

ρLuref

µ
µcp

k
= Re·Pr=

inertia
viscosity

dissipation
conduction
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and
cpTref L

uref ν
=

Luref

ν
cpTref

u2
ref

= Re· 1
Ec

=
inertia

viscosity
enthalpy

kinetic energy

Summarizing the non-dimensional equations,

∂u∗

∂x∗
+

∂v∗

∂y∗
= 0 (2.5)

∂u∗

∂ t∗
+

∂u∗
2

∂x∗
+

∂u∗v∗

∂y∗
= −∂P∗

∂x∗
+

1
Re

(

∂ 2u∗

∂x∗2
+

∂ 2u∗

∂y∗2

)

(2.6)

∂v∗

∂ t∗
+

∂u∗v∗

∂x∗
+

∂v∗
2

∂y∗
= −∂P∗

∂y∗
+

1
Re

(

∂ 2v∗

∂x∗2
+

∂ 2v∗

∂y∗2

)

(2.7)

∂T∗

∂ t∗
+u∗

∂T∗

∂x∗
+v∗

∂T∗

∂y∗
=

1
Re·Pr

(

∂ 2T∗

∂x∗2
+

∂ 2T∗

∂y∗2

)

(2.8)

+
Ec
Re

(

2

(

∂u∗

∂x∗

)2

+2

(

∂v∗

∂y∗

)2

+

(

∂v∗

∂x∗
+

∂u∗

∂y∗

)2
)

Note the extreme similarity in form between Equations 2.1–2.4 on the one hand and
Equations 2.5–2.8. From now on, we’ll use the non-dimensional form without the
∗ superscripts.

Finally, it’s worth noting that the non-dimensional parameters depend only on fluid
properties (which we are assuming to be fixed) and on the reference values:

Re =
ρLuref

µ
=

Luref

ν

Pr =
µcp

k

Ec =
u2

ref

cpTref

We can deduce several things from the way in which these non-dimensional coeffi-
cients appear in the non-dimensional equations.

• The viscous terms in the momentum equations will be important unless the
Reynolds number is extremely large, and these terms will dominate the mo-
mentum equations in the limit of low Reynolds number (creeping flow). The
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heat conduction and viscous dissipation terms in the energyequation also
have Reynolds number scaling, with the same consequences.

• The heat conduction term has an additional dependence on thePrandtl num-
ber, which is a fluid property that measures whether momentumor heat dif-
fuses more rapidly in the fluid.

• The viscous dissipation has an additional dependence on theEckert number,
which is a measure of the relative importance of internal energy and kinetic
energy in the flow.

2.2 Derivation of model problems

Although the Navier-Stokes equations are useful for solving physical problems,
there are too many complexities involved in their solution for them to be a good
starting point for study. However, we can derive several pedagogically useful model
problems from the Navier-Stokes equations that can be used to illustrate particular
techniques in CFD.

Poisson’s Equation

Begin with the two-dimensional incompressible energy equation, including a source
term:

∂T
∂ t

+u
∂T
∂x

+v
∂T
∂y

=
1

Re·Pr
∇2T +

Ec
Re

(

2

(

∂u
∂x

)2

+2

(

∂v
∂y

)2

+

(

∂v
∂x

+
∂u
∂y

)2
)

+ Q̇

Assume steady-state and zero velocity:

1
Re·Pr

∇2T = −Q̇

∂ 2T
∂x2 +

∂ 2T
∂y2 = −Re·PrQ̇≡ S

This is the familiar Poisson equation, which describes (among other things) steady
heat conduction with a heat source. This is an elliptic PDE; that is, Poisson’s equa-
tion poses a pure boundary value problem, with temperature everywhere coupled to
temperature everywhere else.
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Heat equation

Starting again with the incompressible energy equation in two dimensions, and this
time assume zero velocity and no source term,

∂T
∂ t

=
1

Re·Pr

(

∂ 2T
∂x2 +

∂ 2T
∂y2

)

= α
(

∂ 2T
∂x2 +

∂ 2T
∂y2

)

This is thetransient heat conduction equationor heat equation. This is a parabolic
PDE, so the heat equation poses an initial-boundary value problem. The solution at
(x, t) depends on the solution at allx at that time.

Wave equation

Begin yet again with the incompressible energy equation, and assume zero viscosity
and thermal conductivity. Also, neglect the source term. Then we get:

∂T
∂ t

+u
∂T
∂x

+v
∂T
∂y

= 0

If we know the velocity, then this is a hyperbolic PDE for the temperature T. This
is the wave equation, which is an initial-value problem. Forone dimension, we get

∂T
∂ t

+u
∂T
∂x

= 0

This is the linear convection equation in one dimension. This problem has a general
solution of the form

E(x,ut) = f (x−ut)

so solutions travel unchanged at constant speed.

For what other bits of the physics of the Navier-Stokes equations is this a good
model? That is, what other flow quantities are carried along with the flow?



Chapter 3

Space Discretization of PDE’s

Suppose we have a general conservation law (with source term) of the form1

∂U
∂ t

+
∂F
∂x

+
∂G
∂y

+
∂H
∂z

= S (3.1)

Before we can compute the solution of this problem, we must rewrite the PDE into
a system of algebraic equations relating the solution at onetime level to the solution
at the next time level. The first step in this process is space discretization, which
will convert the PDE into a system of coupled ODE’s describing the variation of
solution unknowns with time. Next, these ODE’s are discretized in time to produce
a set of algebraic equations.

3.1 Overview

We begin with a comparison among finite difference, finite element, and finite vol-
ume methodologies. These methods can all be applied to the PDE in Eq. 3.1, but
for simplicity and concreteness, we will consider the one-dimensional advection-
diffusion equation:

∂T
∂ t

+
∂uT
∂x

= α
∂ 2T
∂x2

1This form is much more general than it looks. In particular, it is a simple matter to write the
Navier-Stokes equations in this form.

15
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whereu andα are known constants. We consider the spatial domain[0,1], divided
into N equal intervals, withT (0, t) = 1 and ∂T

∂x (1, t) = 0. Initial conditions need
not concern us here.

3.1.1 The Finite Difference Method

In the finite difference methods, we compute the solution at points in the domain.
In this case, we will haveN+1 points located atxi =

i
N , i = 0..N. We will refer

to the solution atxi asTi. To approximate the spatial derivatives, we will use finite
differences, just as in the classical definition of the derivative. Because there is
more than one way to approximate a derivative at a point, the discretization is not
unique; one possibility is to use

∂T
∂x

≈ Ti+1−Ti−1

2∆x
∂ 2T
∂x2 ≈ Ti+1−2Ti +Ti−1

∆x2

Using Taylor series expansions, it is easy to verify that these approximations are
accurate to withinO

(

∆x2
)

; that is, that the difference between= and≈ for these
approximations decreases with the square of the mesh spacing. In this case, we can
write a discrete approximation to the PDE as:

dTi

dt
+u

Ti+1−Ti−1

2∆x
= α

Ti+1−2Ti +Ti−1

∆x2

again to withinO
(

∆x2
)

. This leaves usN−1 equations (for points 1 throughN−1)
written in terms ofN+1 unknowns (T0 andTN are the other two). Fortunately, we
have two boundary conditions, which can again be written by replacing derivatives
with approximations:

T0 = 1
TN−TN−1

∆x
= 0

The former happens to be exact (no approximation was required), while the latter
turns out to be first-order accurate.
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3.1.2 The Finite Element Method

In the finite element method, the solution is computed at nodal values (here we
use the same points as in the finite difference example), and interpolated between
nodes by using basis functions so that a continuous representation of the solution is
available. That is, the global solution is written as

T (x, t) =
N

∑
i=0

bi (x)Ti (3.2)

where thebi arebasis functions, and theTi are the nodal solution values (which vary
in time, but this is suppressed for notational clarity). Basis functions are always
defined to have a value of 1 at exactly one nodal point, and zeroat all others; this
ensures that the interpolation matches the nodal values at the nodes. Basis functions
are also defined to havecompact support, meaning that they are uniformly zero
outside of a small region near “their” node. For our present purposes, we will
consider the piecewise-linear tent-shaped basis functiongiven by:

bi (x) =







1+ x−xi
∆x xi−1≤ x≤ xi

1− x−xi
∆x xi ≤ x≤ xi+1

0 elsewhere
(3.3)

This basis function must be modified at the ends of the domain to be one sided, so
that the basis function does not overlap the end of the domain.

Finite volume discretization proceeds by multiplying the PDE by a test function
wi (x); we will consider the Galerkin finite element discretization, in which the
test and basis functions are identical. This weighted PDE isintegrated over the
domain, with the solution represented by Equation. 3.2. Repeating this for each
basis function results inN+1 equations for the nodal solution values.

In this case, for an interior node, we write:

wi

N

∑
j=0

(

b j
dTj

dt

)

+uwi

N

∑
j=0

(

Tj
dbj

dx

)

= αwi

N

∑
j=0

(

Tj
d2b j

dx2

)

Note that, even for linear basis functions, the second derivative on the right-hand
side is non-zero atx = x j (where it is infinite). Also, for the given basis and test
functions, the only non-zero terms occur forj = i−1, i, i +1, which reduces both
analytic and computational effort enormously. Now we integrate over the domain,
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which reduces to integration over the support ofwi :

∫ 1

0

[

wi

i+1

∑
j=i−1

(

b j
dTj

dt

)

+uwi

i+1

∑
j=i−1

(

Tj
dbj

dx

)

]

dx =
∫ 1

0
αwi

i+1

∑
j=i−1

(

Tj
d2b j

dx2

)

dx

∫ (i+1)∆x

(i−1)∆x

[

wi

i+1

∑
j=i−1

(

b j
dTj

dt

)

+uwi

i+1

∑
j=i−1

(

Tj
dbj

dx

)

]

dx =

∫ (i+1)∆x

(i−1)∆x
αwi

i+1

∑
j=i−1

(

Tj
d2b j

dx2

)

dx

Let’s look at one term at a time. First, the advection term:

∫ (i+1)∆x

(i−1)∆x
uwi

i+1

∑
j=i−1

(

Tj
dbj

dx

)

dx =

[

uwi

i+1

∑
j=i−1

(

Tjb j
)

](i+1)∆x

(i−1)∆x

−
∫ (i+1)∆x

(i−1)∆x
u

dwi

dx

i+1

∑
j=i−1

(

Tjb j
)

dx

Here we’ve used integration by parts, and note that the first term on the left is zero
for all i (except fori = N, a boundary case which we’ll ignore for now). In the
second term, the derivative of the weight function is:

dwi

dx
=

{ 1
∆x (i−1)∆x< x< i∆x
−1
∆x i∆x< x< (i +1)∆x

and the sum is the solution interpolant:

i+1

∑
j=i−1

Tjb j =

{

Ti−1+
(

x
∆x− (i−1)

)

(Ti−Ti−1) (i−1)∆x< x< i∆x
Ti+1+

(

i +1− x
∆x

)

(Ti−Ti+1) i∆x< x< (i +1)∆x

So that integral gets split into two pieces, thus:

−
∫ (i+1)∆x

(i−1)∆x
u

dwi

dx

i+1

∑
j=i−1

(

Tjb j
)

dx = −
∫ i∆x

(i−1)∆x
u

1
∆x

(

Ti−1+
( x

∆x
− (i−1)

)

(Ti−Ti−1)
)

dx

−
∫ (i+1)∆x

i∆x
u

(−1
∆x

)

(

Ti+1+
(

i +1− x
∆x

)

(Ti−Ti+1)
)

dx

= −
[

u
∆x

(

Ti−1x+

(

x2

2∆x
− (i−1)x

)

(Ti−Ti−1)

)]i∆x

(i−1)∆x

−
[−u

∆x

(

Ti+1x+

(

(i +1)x− x2

2∆x

)

(Ti−Ti+1)

)](i+1)∆x

i∆x

= − u
∆x

[

Ti−1∆x+

(

(2i−1)∆x2

2∆x
− (i−1)∆x

)

(Ti−Ti−1)

]
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+
u

∆x

[

Ti+1∆x+

(

(i +1)∆x− (2i +1)∆x2

2∆x

)

(Ti−Ti+1)

]

= u

[

−Ti−1−
Ti−Ti−1

2
+Ti+1+

Ti−Ti+1

2

]

= u
Ti+1−Ti−1

2

The second-last line contains the average values between(i, i +1) and(i, i−1) in
a recognizable form; this isn’t surprising, considering weintegrated the solution
times a constant.

For the diffusive term, we’ll once again integrate by parts once:

∫ (i+1)∆x

(i−1)∆x
αwi

i+1

∑
j=i−1

(

Tj
d2b j

dx2

)

dx=

˙[

αwi

i+1

∑
j=i−1

(

Tj
dbj

dx

)

](i+1)∆x

(i−1)∆x

−α
∫ (i+1)∆x

(i−1)∆x

dwi

dx

i+1

∑
j=i−1

(

Tj
dbj

dx

)

dx

Again, except for boundary cases, the first term is zero for all i. The second term
has a piecewise constant integrand, with

i+1

∑
j=i−1

Tj
dbj

dx
=

{

Ti−Ti−1
∆x (i−1)∆x< x< i∆x

Ti+1−Ti
∆x i∆x< x< (i +1)∆x

So that remaining integral becomes:

−α
∫ (i+1)∆x

(i−1)∆x

dwi

dx

i+1

∑
j=i−1

(

Tj
dbj

dx

)

dx = −α
[

1
∆x

Ti−Ti−1

∆x
+

(−1
∆x

)

Ti+1−Ti

∆x

]

∆x

= α
Ti+1−2Ti +Ti−1

∆x

Okay, that’s two integrals out of three done. Now for the time-dependent term.
Since the node locations and the basis and test functions areconstant, we can pull
the time derivative out of the integral to get:

∫ (i+1)∆x

(i−1)∆x
wi

i+1

∑
j=i−1

(

b j
dTj

dt

)

dx=
d
dt

∫ (i+1)∆x

(i−1)∆x
wi

i+1

∑
j=i−1

(

b jTj
)

dx

Now we substitute forwi andb j , and it’s easy to get to:

d
dt

∫ (i+1)∆x

(i−1)∆x
wi

i+1

∑
j=i−1

(

b jTj
)

dx =
d
dt

∫ i∆x

(i−1)∆x

( x
∆x
− (i−1)

)(

Ti−1+(Ti−Ti−1)
( x

∆x
− (i−1)

))

dx
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+
d
dt

∫ (i+1)∆x

i∆x

(

i +1− x
∆x

)(

Ti+1+(Ti−Ti+1)
(

i +1− x
∆x

))

d

= ∆x
d
dt

(

Ti+1+4Ti +Ti−1

6

)

where the last line reflects not the occurrence of a miracle, but simply some tedious
algebra. Combining the results of evaluating these variousintegrals, we get the
linear Galerkin finite-element discretization for the advection diffusion equation:

∂T
∂ t

+
∂uT
∂x

= α
∂ 2T
∂x2

(

1
6

dTi+1

dt
+

2
3

dTi

dt
+

1
6

dTi−1

dt

)

+u
Ti+1−Ti−1

2∆x
= α

Ti+1−2Ti +Ti−1

∆x2

Note that we have a set of algebraic equations to solve for thetime derivatives. For
steady-state computations, it’s customary to fold the left-hand side terms together
to get simplydTi/dt; this is a specific example of the generallumped mass matrix
technique. For boundary conditions, we once again apply

T0 = 1
TN−TN−1

∆x
= 0

although for unsteady problems, it’s convenient to differentiate these with respect
to time.

3.1.3 The Finite Volume Method

The finite volume method divides the domain into control volumes. In this case,
there areN control volumes, with control volumei covering the region from(i−1)∆x
to i∆x. The quantity we compute in this case will be the control volume average of
the solution, which we will refer to as̄Ti ≡ 1

∆x

∫ i∆x
(i−1)∆xT dx. We begin by integrating

the equations over a control volume:

∂T
∂ t

+
∂uT
∂x

= α
∂ 2T
∂x2

∫

CV i

∂T
∂ t

dx+
∫

CV i

∂uT
∂x

=
∫

CV i
α

∂ 2T
∂x2 dx
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Now we apply Gauss’s Theorem to convert the second and third integrals; in three
dimensions, this is stated as:

∫

Ω
∇ ·~F dV =

∮

∂Ω
~F · n̂dA

where~F is an arbitrary vector and ˆn is an outward unit normal. Applying Gauss’s
theorem in this one-dimensional context, we get:

∫

CV i

∂T
∂ t

dx+
∫

CV i

∂uT
∂x

dx =
∫

CV i
α

∂ 2T
∂x2 dx

∫

CV i

∂T
∂ t

dx+(uT)x=i∆x− (uT)x=(i−1)∆x = α

(

(

∂T
∂x

)

x=i∆x
−
(

∂T
∂x

)

x=(i−1)∆x

)

For fixed control volumes, the derivative can be removed fromthe integral and
converted to a complete differential. The remaining quantities in the discretiza-
tion represent fluxes across the control volume boundaries,and sensible choices for
computing these fluxes is a key to success with the finite volume method. In the
case, we will write

(uT)x=i∆x = u
T̄i + T̄i+1

2
(

∂T
∂x

)

x=i∆x
=

T̄i+1− T̄i

∆x

These choices, as we shall see, turn out to be second-order accurate. If we substitute
these expressions into our control volume averaged PDE, we get

∫

CV i

∂T
∂ t

dx+(uT)x=i∆x− (uT)x=(i−1)∆x = α

(

(

∂T
∂x

)

x=i∆x
−
(

∂T
∂x

)

x=(i−1)∆x

)

∆x
dT̄i

dt
+u

T̄i+1− T̄i−1

2
= α

T̄i+1−2T̄i + T̄i−1

∆x
dT̄i

dt
+u

T̄i+1− T̄i−1

2∆x
= α

T̄i+1−2T̄i + T̄i−1

∆x2

Again, we get an interior scheme indistinguishable from thefinite difference and
finite element schemes for this problem. The boundary conditions, however, dif-
fer. In this case, if we follow from the flux definitions, we findthat the boundary
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conditions can be written as:

Tx=0 =
T̄1+ T̄0

2
= 1

(

∂T
∂x

)

x=N∆x
=

T̄N+1− T̄N

∆x
= 0

This looks like it might be a step backwards (we’ve introduced two new variables,
T̄0 andT̄N+1), the interior scheme contains these variables as well. Forinstance,

dT̄1

dt
+u

T̄2− T̄0

2∆x
= α

T̄2−2T̄1+ T̄0

∆x2

So in the end, we can choose to think of this as a problem withN+2 equations and
N+2 unknowns.

3.2 Transformation of a PDE into Control Volume
Form

If we integrate Equation 3.1 over a three-dimensional control volume, we get

∫

CV

∂U
∂ t

dV+

∫

CV

∂F
∂x

dV+

∫

CV

∂G
∂y

dV+

∫

CV

∂H
∂z

dV =

∫

CV
SdV

∫

CV

∂U
∂ t

dV+
∫

CV

(

∂F
∂x

+
∂G
∂y

+
∂H
∂z

)

dV =
∫

CV
SdV

∫

CV

∂U
∂ t

dV+

∫

CV
∇ ·~F dV =

∫

CV
SdV

where the last equation arises by defining~F = Fî +Gĵ +Hk̂. Using Gauss’s theo-
rem, we get

∫

CV

∂U
∂ t

dV+

∮

∂ (CV)
~F ·~ndA=

∫

CV
SdV

If we assume that the size and shape of the control volume is fixed (computationally,
assume that the mesh is not moving), we can simplify a bit further.

d
dt

∫

CV
U dV+

∮

∂ (CV)
~F ·~ndA=

∫

CV
SdV (3.4)
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In the finite-volume method, we abandon hope of knowing anything about the de-
tails of the solution within a control volume and instead content ourselves with
computingŪ ≡ 1

V

∫

CVU dV. This average value isnot necessarily the value of the
solution at any fixed point within the control volume, including its centroid; for-
getting this fact can lead to unfortunate misunderstandings when developing finite-
volume algorithms.2

If we also define a mean source term contributionS̄≡ 1
V

∫

CV SdV, we can write
Equation 3.4 as follows.

dŪ
dt

=− 1
V

∮

∂ (CV)
~F ·~ndA+ S̄ (3.5)

This equation states that the average valueŪ of the solution in the control volume
changes at a rate determined by the net flux of stuff across theboundaries of the
control volume1

V

∮

~F ·~ndA and the average rate of production of stuff inside the
control volumeS̄.

Also, Equation 3.5 suggests that for a general time-varyingproblem, the process of
advancing the solution from one time levelt = n∆t to the next ((n+1)∆t) requires
four operations:

1. Evaluation of the flux~F at the surface of the control volume.

2. Integration of the normal flux~F ·~naround the boundary of the control volume.

3. Evaluation and integration of the source termSover the control volume.

4. Updating the control volume average valueŪ .

3.3 Second-order Accurate Flux for the Poisson Equa-
tion

Poisson’s equation in two dimensions is:

∂ 2T
∂x2 +

∂ 2T
∂y2 = S.

2Nevertheless, it isn’t hard to show (by expanding in a Taylorseries and integrating over the
control volume) that̄U is within O(∆x2) of U at the centroid of the control volume. Likewise,S̄can
be evaluated to withinO

(

∆x2
)

by taking its value as̄S≈ S(Ū).
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Integrating over control volumes, we have
∫

CV

(

∂ 2T
∂x2 +

∂ 2T
∂y2

)

dA =

∫

CV
SdA (3.6)

∫

CV
∇ ·
(

∂T
∂x
∂T
∂y

)

dA = S̄A (3.7)

∮

∂CV
(∇T) ·~nds = S̄A (3.8)

The last transformation uses Gauss’s theorem. So the flux in Poisson’s equation is
(

∂T
∂x

∂T
∂y

)T
. The normal component of this flux is∂T

∂x on faces perpendicular to

thex-axis and∂T
∂y on faces perpendicular to they-axis.

Recall that the derivative can be defined as

dT
dx

∣

∣

∣

∣

x0

= lim
ε→0

T(x0+ ε)−T(x0− ε)
2ε

, (3.9)

assuming that the limit exists. This is the well-known centered difference formula.
Note that the difference between the total and partial derivative here is simply that
the partial derivative carries along a non-varying second independent variable:

∂T
∂x

∣

∣

∣

∣

x0

= lim
ε→0

T(x0+ ε,y)−T(x0− ε,y)
2ε

, (3.10)

We can use this to calculate the flux we need, because we know that, for a suffi-
ciently fine mesh, we will get the correct derivative. While it’s very comforting to
know this, it would be even better if we knew how quickly the error in the approxi-
mation approaches zero.

To determine this, expand each term on the right-hand side ofEquation 3.9 in a
Taylor series expansion aboutx0:

T (x0+ ε) = T(x0)+ ε
dT
dx

∣

∣

∣

∣

x0

+
ε2

2
d2T
dx2

∣

∣

∣

∣

x0

+
ε3

6
d3T
dx3

∣

∣

∣

∣

x0

+ · · ·

T (x0− ε) = T(x0)− ε
dT
dx

∣

∣

∣

∣

x0

+
ε2

2
d2T
dx2

∣

∣

∣

∣

x0

− ε3

6
d3T
dx3

∣

∣

∣

∣

x0

+ · · ·

Combining these,

T(x0+ ε)−T(x0− ε)
2ε

=
dT
dx

∣

∣

∣

∣

x0

+
ε2

6
d3T
dx3

∣

∣

∣

∣

x0

+O
(

ε4) (3.11)
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Another way to write this is to useTaylor tables. Basically, this approach is just a
convenient way to avoid writing out all of every term each time you expand some-
thing in a Taylor series. Each column of the Taylor table represents one term in
the Taylor series expansion, and each row represents an expression that is being ex-
panded. The entries in the table are coefficients. Here’s theprevious example done
using a Taylor table.

T(x0)
∂T
∂x

∣

∣

∣

x0

∂ 2T
∂x2

∣

∣

∣

x0

∂ 3T
∂x3

∣

∣

∣

x0
T(x0+ε)

2ε
1
2ε

1
2

ε
4

ε2

12

−T(x0−ε)
2ε − 1

2ε
1
2 −ε

4
ε2

12
T(x0+ε)−T(x0−ε)

2ε 0 1 0 ε2

6

Thetruncation errorin a difference approximationD of a differential operatorD is
defined to beD−D.3 An approximation is said to bekth-order accurateif and only
if the leading-order term in the truncation error isO

(

εk
)

.

For our example, the truncation error isε2

6
∂ 3T
∂x3

∣

∣

∣

x0

+O
(

ε4
)

. This approximation is

therefore second-order accurate, and the error in the approximation will fall by a
factor of four each timeε is reduced by a factor of two.

Returning to our example of Poisson’s equation, Equation 3.11 implies that we can
write

∂T
∂x

∣

∣

∣

∣

i+ 1
2 , j

=
T̄i+1, j − T̄i, j

∆x
+O

(

∆x2)

and
∂T
∂y

∣

∣

∣

∣

i, j+ 1
2

=
T̄i, j+1− T̄i, j

∆y
+O

(

∆y2)

But can we really justify the use of̄Ti+1, j rather than a pointwise value ofT evalu-
ated at the center of control volume(i +1, j)? Yes, in fact we can, so long as we’re
only looking at first- or second-order accuracy; it’s not hard to show that the differ-
ence between the control volume average and the local value at the control volume
centroid for a smooth function and a structured mesh is second order.

3You may also see this definition with the sign reversed; the difference is largely philosophical.
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3.4 Flux Integrals

Equation 3.5 requires us to evaluate the integral of the normal flux around each
control volume. That is, we need to compute

∮

∂CV
~F ·~ndl. For the control volume

of Figure 3.1, we can write this as

i+1/2,j+1/2

i-1/2,j-1/2 i+1/2,j-1/2

i-1/2,j+1/2

n

F

n

F

Fn

Fn
∆y

x∆

Figure 3.1: Flux integration around a finite volume.

∮

∂CV
~F ·~ndl = ~Fi+ 1

2 , j
·~ni+ 1

2 , j
∆y+~Fi, j+ 1

2
·~ni, j+ 1

2
∆x

+~Fi− 1
2 , j
·~ni− 1

2 , j
∆y+~Fi, j− 1

2
·~ni, j− 1

2
∆x

=
(

Fx;i+ 1
2 , j
−Fx;i− 1

2 , j

)

∆y+
(

Fy;i, j+ 1
2
−Fy;i, j− 1

2

)

∆x

Returning once again to our Poisson example, we have to second-order accuracy

Fx;i+ 1
2 , j

=
T̄i+1, j − T̄i, j

∆x

Fx;i− 1
2 , j

=
T̄i, j − T̄i−1, j

∆x

Fx;i, j+ 1
2

=
T̄i, j+1− T̄i, j

∆y

Fx;i, j− 1
2

=
T̄i, j − T̄i, j−1

∆y
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∮

∂CV
~F ·~ndl =

(

T̄i+1, j −2T̄i, j + T̄i−1, j
) ∆y

∆x
+
(

T̄i, j+1−2T̄i, j + T̄i, j−1
) ∆x

∆y

Substituting this into Equation 3.8 and dividing byA= ∆x∆y, we get the canonical
finite-volume discretization of Poisson’s equation.

T̄i+1, j −2T̄i, j + T̄i−1, j

∆x2 +
T̄i, j+1−2T̄i, j + T̄i, j−1

∆y2 = S̄ (3.12)

It is easy to show by Taylor analysis that the left-hand side of Equation 3.12 is a
second-order accurate approximation to the Laplacian ofT̄ at i, j.

3.5 Problems

1. Show that, for a smooth function, the difference betweenTiandT̄i is O
(

∆x2
)

.
(Hint: expandT in a Taylor series aboutx= xi .

2. Show that
(

∂ 2T
∂x2 +

∂ 2T
∂y2

)

i, j
=

T̄i+1, j −2T̄i, j + T̄i−1, j

∆x2 +
T̄i, j+1−2T̄i, j + T̄i, j−1

∆y2 +O
(

∆x2,∆y2)

3. High-order accurate flux evaluation for Poisson’s equation. Suppose that we
wanted a more accurate approximation for the flux for Poisson’s equation
than we got in Section 3.3. We could choose to use four controlvolume av-
erages to compute the flux:T i+2, T i+1, T i , andT i−1. Find the most accurate
possible approximation to the∂T

∂x i+ 1
2

and determine the leading-order trunca-

tion error term. Combine this flux with its analog ati− 1
2 to get a high-order

approximation to the Laplacian in 1D, and find the truncationerror for this
Laplacian approximation.

4. Show that the flux for the control volume boundary ati + 1
2 for the wave

equation really isTi+ 1
2
.

5. First-order upwind flux for the wave equation. The flux Ti+ 1
2

can be ap-
proximated most simply by using data from the control volumeupwind of the
interface; for a positive wave speed, this is control volumei. Show that this
approximation is only first-order accurate.
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6. Centered flux for the wave equation.Suppose we were to use two control
volume averages (̄Ti andT̄i+1) to evaluate the flux ati+ 1

2. Find an expression
for the flux, determine the accuracy of the flux (including theleading-order
term in the truncation error), and find the flux integral for the 1D case.

7. Upwind extrapolated flux for the wave equation. Suppose that we wanted
a more accurate approximation for the flux for the wave equation while still
using upwind data. We could choose to use two control volume averages
to compute the flux ati + 1

2: T i andT i−1. Find the most accurate possible
approximation to the flux and determine the leading-order truncation error
term.



Chapter 4

Accuracy Assessment for Numerical
Solutions

4.1 If an exact solution is available

Suppose that for some problem of interest we have an exact solution ue(x,y) and a
numerical solution ˆu∆x(xi, j ,yi, j) on a mesh with spacing∆x. The errorEi, j in the
numerical solution is:

Ei, j ;∆x = ue
(

xi, j ,yi, j
)

− û∆x
(

xi, j ,yi, j
)

So that’s simple enough, and so is plotting the error. This can give useful informa-
tion about the location and (often) the source of numerical errors. It can also give
useful information about places where the solution is not resolved well enough;
poor resolution leads to increased truncation error, whichwill show up in these
plots.

To summarize the error as a single number, there are three commonly-used norms:

∥

∥Ei, j
∥

∥

1 =
∑i ∑ j

∣

∣Ei, j
∣

∣

imaxjmax
(4.1)

∥

∥Ei, j
∥

∥

2 =

√

∑i ∑ j E
2
i, j

imaxjmax
(4.2)

∥

∥Ei, j
∥

∥

∞ = max
i, j

∣

∣Ei, j
∣

∣ (4.3)
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Order of accuracy can be determined by computing some error norm for each of a
series of meshes and determining the slope on a log-log plot of the error versus∆x,
for example. This slope will be the order of accuracy of the method. In general, the
order of accuracy determined in this way will not be exactly 1, 2, 3, etc. Variations
of as much as 0.2 or so are routinely accepted as insignificantin this sort of analysis.

The global normsL1(Equation. 4.1) andL2(Equation. 4.2) often converge a half or
full order faster than theL∞ norm (Equation. 4.3), which is a local measure. That is,
theL∞ norm can converge asO(∆x) because of a local error at a point, while theL2

norm will converge asO
(

∆x3/2
)

and theL1 norm will converge asO
(

∆x2
)

. While

this is notalwaystrue, it does happen sometimes.

4.2 If an exact solution isnot available

Suppose we have solutions on three meshesM1, M2, andM3, whereM2 has twice
as many mesh points asM1, andM3 has twice as many asM2. We assume that the
error in each solution is proportional to its mesh spacing tosome powerk; then we
can write the solutions as:

u|M1 = ue+C∆xk

u|M2 = ue+C

(

∆x
2

)k

u|M3 = ue+C

(

∆x
4

)k

Taking the norm of the difference of the solutions, we expectto get:

‖u|M1−u|M2‖=C∆xk
(

1− 1
2k

)

and

‖u|M2−u|M3‖=C∆xk
(

1
2k −

1
4k

)

First, the difference should get smaller as we refine the mesh. Second, if we take
the ratio of these last two expressions, we get

‖u|M2−u|M3‖
‖u|M1−u|M2‖

=

1
2k

(

1− 1
2k

)

(

1− 1
2k

) =
1
2k



4.3. PROBLEMS 31

Clearly, we can use this to evaluatek. And there’s more good news: we can estimate
the error norm for the finest-mesh solution. That norm error isC∆xk 1

4k . The norm

difference between solutions onM2 andM3 is C∆xk
(

1
2k − 1

4k

)

. The ratio of these

two is:
‖EM3‖

‖u|M2−u|M3‖
=

1
4k

2k−1
4k

=
1

2k−1

So now we can estimate the error norm for the finest mesh.

This approach has several pitfalls.

• The solution must be continuous, because otherwise error norms are very
tricky to evaluate.

• Each of the three solutions must be accurate enough (features must be well-
enough resolved) that the error may be assumed to follow its asymptotic be-
havior.

• In any event, the error norm that is computed is not the most reliable estimate
in the world.

4.3 Problems

1. For a particular discrete problem, theL2-norm of the error in the solution
(measured by comparison with a known exact solution) is given by:

Mesh L2 Ratio

10×10 4.68·10−2 —
20×20 9.08·10−3 5.15
40×40 2.13·10−3 4.26
80×80 5.32·10−4 4.00

What is going on here? What would you estimate is the true order of accu-
racy?
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2. Suppose that you are solving a problem for which you do not have an ana-
lytic comparison solution. You take norms of the differencein solutions on
different meshes and get the following data:

Mesh 1 Mesh 2 L2

20×20 40×40 1.25·10−3

40×40 80×80 1.78·10−4

80×80 160×160 2.55·10−5

Find the actual numerical order of accuracy of the scheme andestimate the
error in the computed solution on the finest mesh. What do you think is the
order of accuracy that the scheme is analytically expected to achieve?

3. For unstructured meshes, estimating order of accuracy iscomplicated some-
what because one can’t just double the number of cells in eachdirection. The
following table contains error data for a 2-D advection-diffusion problem (as
calculated by my research code), using an exact solution forcomparison. Es-
timate the order of accuracy for each norm.

# cells L1 L2 L∞

64 3.923·10−3 4.669·10−3 9.370·10−3

240 1.295·10−3 1.716·10−3 6.239·10−3

922 1.965·10−4 2.656·10−4 1.721·10−3



Chapter 5

Time Accuracy and Stability
Analysis for Ordinary Differential
Equations

As we shall see, the space discretization of a partial differential equation in one
space dimension results in a coupled system of ordinary differential equations in
time, one equation for each unknown in the spatial mesh. It ispossible to analyti-
cally transform this system of ODE’s into an equivalent decoupled system. While
there is no practical application for this transformation in terms of how we solve a
system of PDE’s, the decoupled system is much easier to analyze to determine the
time accuracy and stability properties of a numerical scheme.

Accompanying this theoretical discussion is a set of examples showing how to apply
these techniques to real time advance schemes.

5.1 From PDE to Coupled ODE’s

Suppose that we have a generic space discretization for a PDEin x andt written as

∂T
∂ t i
≡ dTi

dt
= a−2Ti−2+a−1Ti−1+a0Ti +a1Ti+1+a2Ti+2

This is referred to as thesemi-discrete formof the PDE, because the equation has
been discretized in space but not in time. Now let’s write thesemi-discrete form of

33
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the equation for every point in the mesh, assumingperiodic boundary conditions.
This gives us a coupled set of ODE’s for theTi .

dT0

dt
= a−2Timax−2+a−1Timax−1+a0T0+a1T1+a2T2

dT1

dt
= a−2Timax−1+a−1T0+a0T1+a1T2+a2T3

dT2

dt
= a−2T0+a−1T1+a0T2+a1T3+a2T4

...
dTi

dt
= a−2Ti−2+a−1Ti−1+a0Ti +a1Ti+1+a2Ti+2

...
dTimax−1

dt
= a−2Timax−3+a−1Timax−2+a0Timax−1+a1T0+a2T1

This can be re-written as:

d
dt























T0

T1
T2
...
Ti
...

Timax−1























=























a0 a1 a2 a−2 a−1

a−1 a0 a1 a2 a−2
a−2 a−1 a0 a1 a2

. . .
a−2 a−1 a0 a1 a2

. . .
a1 a2 a−2 a−1 a0













































T0

T1
T2
...
Ti
...

Timax−1























or as

d~T
dt

= Bp(a−2,a−1,a0,a1,a2)~T (5.1)

So far, nothing fancy has happened — we’ve just discretized the PDE in space and
manipulated the result into a convenient form. This approach will alwayswork;
no matter what differential operator we have in space or whatdiscretization we
use for it, an equation like 5.1 can always be derived. The only difference among
such equations is the number of diagonals in thebanded periodic matrixand what
numbers go into each diagonal.
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It can be shown (see Appendix B) that the matrixBp(a−2,a−1,a0,a1,a2) has a
complete eigensystem. Therefore, we can construct a matrixX whose columns are
the right eigenvectors ofBp and use it to diagonalize the system in Equation 5.1:

X−1d~T
dt

= X−1Bp
(

XX−1)~T

d
(

X−1~T
)

dt
=

(

X−1BpX
)

(

X−1~T
)

d~w
dt

= Λ~w

where~w≡ X−1~u is a new set of unknowns andΛ is a diagonal matrix whose diag-
onal entries are the eigenvalues ofBp. This is a system ofimax uncoupledODE’s.
Solving this system is equivalent to solving Equation 5.1.

Summary We began with a PDE; discretized it in space to get a system of cou-
pled ODE’s; and diagonalized that system to get an uncoupledsystem of ODE’s.1

Because the two systems of ODE’s are completely equivalent,the stability limita-
tions for a time advance method applied to each of them is the same. This means
thatwe can analyze the stability of time advance methods completely independently
from space discretization methods.

Analysis of a time advance scheme for a model ODE will tell us what eigenvalues
the matrixBp can have for the combined space and time discretization scheme to be
stable. In fact, we can easily get a bit more than that: we can find the amplification
factorG for any eigenvalue in the complex plane. This information isindependent
of the spatial scheme that produced the eigenvalue; the timeadvance analysis needs
no information about the spatial discretization, not even the differential operator.

5.2 Analysis of Time March Schemes for ODE’s

We’re going to analyze time advance schemes using the model ODE

dw
dt

= λw (5.2)

1Note that this isn’t typically useful in a practical sense, because we rarely have periodic bound-
ary conditions and often are solving non-linear equations.So we don’t solve real problems using
this transformation; we just use the transformation to helpus analyze time advance schemes.
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The exact solution of this equation is:

w(t) = Aeλ t (5.3)

Consequently,v grows exponentially in time whenℜ(λ ) > 0 (≡inherently unsta-
ble), decays exponentially whenℜ(λ ) < 0 (≡inherently stable), and has constant
amplitude whenℜ(λ ) = 0 (≡neutrally stable). Theamplification factorσ of any
solution — exact or numerical — is defined as the growth rate ofthe solution from
time levelt = n∆t to time levelt +∆t = (n+1)∆t. The amplification factor for the
exact solution to the model ODE 5.2 is given by

σexact≡
w(t +∆t)

w(t)
≡ wn+1

wn = eλ∆t = 1+λ∆t+
(λ∆t)2

2
+

(λ∆t)3

6
+ · · · (5.4)

The difference between one numerical time advance scheme and another comes
down to how we approximate the derivative on the left-hand side and the solution
data on the right-hand side of Equation 5.2. We’ll examine a number of alternatives.
In each case, we’ll replacedw

dt andλw with terms containingwn, wn+1, etc. Then
we’ll solve for the amplification factorσ ≡ wn+1/wn.

The accuracy of a time advance scheme depends on how well its amplification
factor matcheseλ∆t for small values ofλ∆t; that is, on how many terms of the Taylor
series expansion of Equation 5.4 are matched by the discretescheme: the order of
accuracy is equal to the highest-order term thatmatchesthe exact amplification
factor.2 A time advance scheme is said to bestable for all complex eigenvaluesλ
for which the magnitude of the complex amplification factor|σ | ≤ 1.

We can combine the analysis results for a spatial scheme (theeigenvaluesλ as a
function of the spatial step∆x) with the results for a time scheme (the amplification
factor σ as a function of the eigenvaluesλ and time step∆t) to determine the
stability properties of a particular space/time discretization (the amplification factor
σ as a function of∆x and∆t). This result will tell us whether there is a maximum
stable time step for a given scheme, and if so what it is. See Chapter 5.5 for more
information about this.

2Yes, this is slightly different than for space schemes, because of a difference in analysis ap-
proach. Using Taylor series expansions for time analysis gives results that are interpreted in the
same way as Taylor analysis for space schemes.
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5.3 Caveats

There are several assumptions made in this analysis that should be explicitly stated,
as they imply restrictions on the applicability of the results of the analysis.

Periodic boundary conditions. This analysis only applies to periodic boundary
conditions. Similar but more complex analysis is possible to determine the
eigenvalue structure for cases with more realistic boundary conditions; these
eigenvalues can be used either analytically or graphicallyto show stability.

Linearity and stationarity. We have assumed that the entries inBp do not depend
on the solution and do not change with time. That is, we assumed that the
problem islinear andstationary. We can’t guarantee that our results will have
any meaning for non-linear or non-stationary problems — like the Navier-
Stokes equations, for example.

Despite these restrictions, one can often perform this linear, periodic stability anal-
ysis and use the results to choose a time step for more complicated problems; gen-
erally, the maximum time step will have to be reduced by a factor of 0.6–0.8.

5.4 Examples

The first series of examples looks at eigenvalues for space discretization schemes.

5.4.1 Eigenvalues for the second-order accurate Laplacianop-
erator

If we use the centered derivatives of Section 3.3 in a spatialdiscretization of the
heat equation, we get

dT
dt i

= α
Ti+1−2Ti +Ti−1

∆x2 (5.5)

soBp = Bp(0, α
∆x2 ,− 2α

∆x2 ,
α

∆x2 ,0) and the eigenvalues are

λ =− 2α
∆x2(1−cosφk).

These eigenvalues fall on the negative real axis, between 0 and− 4α
∆x2 .
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5.4.2 First-order upwind flux for the wave equation

In this case (see Section 3.5), the fluxTi+ 1
2

is approximated to first-order accuracy

by usingT̄i . To find the eigenvalues of this spatial operator, we first write the semi-
discrete form of the governing equation by using the flux integral:

∂Ti

∂ t
= −u

Ti−Ti−1

∆x

= Bp

( u
∆x

,− u
∆x

,0
)

Then the eigenvalues can be written down immediately:

λk =
u

∆x

(

e−Iφk−1
)

=
u

∆x
(−1+cosφk− I sinφk)

This is a circle of radiusu
∆x centered at

(

− u
∆x,0

)

.

In the following series of examples, each time advance scheme is analyzed by using
the model ODE defined in Equation 5.2 to determine both the accuracy and stability
of the scheme.

5.4.3 Explicit Euler scheme

The explicit Euler time advance scheme usesknownsolution data at the current
time leveln to approximate the time derivative of the solution. When applied to the
model ODE (Equation 5.2), this gives:

wn+1−wn

∆t
= λwn (5.6)

or
wn+1 = wn(1+λ∆t)

which implies that
σ = 1+λ∆t

This scheme matches only the first-order term in the Taylor series expansion ofeλ∆t

and so is only first-order accurate. Regarding stability,

|σ |=
√

(ℜ(λ )∆t+1)2+(ℑ(λ )∆t)2
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The contours of the magnitude of the amplification factor (for |σ | ≤ 1) as a function
of complexλ∆t (written asl dt in the captions) for this time advance scheme are:

-3 -2.5 -2 -1.5 -1 -0.5 0
0

0.5

1

1.5

2

2.5

3

Re(l dt)

Im(l dt)

Note that only the upper half of the complex plane is shown; the contours in the
lower half of the plane are mirror images.

5.4.4 Implicit Euler scheme

The implicit Euler time advance scheme uses theunknownsolution data at then+1
time level to approximate the time derivative of the solution. When applied to the
model ODE (Equation 5.2), this gives:

wn+1−wn

∆t
= λwn+1 (5.7)

or
wn+1(1−λ∆t) = wn
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which implies that

σ =
1

1−λ∆t
To determine the order of accuracy of this scheme, we need to be able to compare
this amplification factor to the exact amplification factor of Equation 5.4. To do
this, we note that (forλ∆t < 1),

σ =
1

1−λ∆t
= 1+λ∆t +(λ∆t)2+(λ∆t)3+ · · ·

This scheme matches only the first-order term in the Taylor series expansion of
eλ∆t and so is only first-order accurate. The magnitude of the amplification factor
is given by:

|σ | =
1

|1−λ∆t|

=
1

√

(1−ℜ(λ )∆t)2+(ℑ(λ )∆t)2

The contours of the amplification factor in the complex planefor this time advance
scheme are shown below. It is easy to show that these contoursare circles centered
atλ∆t = 1. The scheme is unstable only for eigenvalues that fall inside a unit circle
centered at this point.

-3 -2 -1 0 1

|G|>1

2 3
0
0.5
1
1.5
2
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5.4.5 Explicit Runge-Kutta schemes

Explicit Runge-Kutta time advance schemes are those schemes that have the fol-
lowing properties:

Explicit. The flux is evaluated from known quantities; no solution of linear systems
is required.

Self-starting. No data from time leveln− 1 is required. A consequence of this
property is that the amplification factor is single-valued.

“Minimal”. (I can’t think of anything better to call it.) The amplification factor
of ak-th order accurate Runge-Kutta scheme matches the exact amplification
factor up to and including the termO

(

∆tk
)

and contains no further terms.

We have already encountered an explicit Runge-Kutta scheme: the explicit Euler
scheme. As you will recall, when written for the model ODE, this scheme is

wn+1−wn

∆t
= λwn

Clearly the first two properties of Runge-Kutta schemes are satisfied. To verify
the third, recall that the amplification factor for the explicit Euler scheme isσ =
1+λ∆t.

We will also use two- and four-stage Runge-Kutta schemes. There are numerous
variants on these schemes, but the two we will use are:

wn+1 = wn+λ ∆t w(1)

w(1) = wn+
λ
2

∆t wn (5.8)

and

wn+1 = wn+
λ ∆t

6

(

wn+2w(1)+2w(2)+w(3)
)

w(3) = wn+λ ∆t w(2)

w(2) = wn+
λ
2

∆t w(1) (5.9)

w(1) = wn+
λ
2

∆t wn
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A second-order Runge-Kutta scheme

This scheme is written for the model ODE as

wn+1 = wn+λ ∆t w(1)

w(1) = wn+
λ
2

∆t wn

Combining these two, we get

wn+1 = wn+λ∆t wn+
(λ∆t)2

2
wn

σ = 1+λ∆t+
(λ∆t)2

2

So the scheme is evidently second-order accurate.

Now let’s consider stability. Along the negative real axis,the amplification factor
is:

σ = 1+a+
a2

2

wherea≡ λ∆t is real and negative. For|σ |= 1, we require:

a+
a2

2
= 0

or a= 0,−2. The scheme is stable inside this region and unstable outside.

Along the imaginary axis,

σ = 1+ Ib− b2

2

whereIb≡ λ∆t with b real. The magnitude of the amplification factor is

|σ |=
√

1−b2+
b4

4
+b2 =

√

1+
b4

4
> 1

The scheme is always unstable for pure imaginary eigenvalues. The stability con-
tours for this scheme are shown below.
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5.5 Stability Analysis for Fully-Discrete Systems

We’ve seen how to analyze time discretization schemes and space discretization
schemes in isolation. Analyzing time and space discretizations independently gives
us full information about accuracy, and the two analyses provide complementary
information about stability. Specifically, analysis of time discretization schemes
applied to the model ODE tells us what the stability bounds are for a given time
advance scheme, by providing an expression for amplification factor as a function of
the eigenvalues of the space differencing scheme. Analysisof the space differencing
scheme tells us what those eigenvalues are.

We can determine the stability of a fully-discrete approximation to a PDE A by
combining the time and space analyses either analytically or graphically.

Analytically, we would substitute the eigenvalues of the spatial operator in the form
λk (∆x,φk) into the amplification factorσ (λk∆t). The stability limit for the com-
bined scheme is determined by the maximum time step for whichthe worst-case
amplification factor magnitude — that is, maxk |σ (λk (∆x,φk)∆t)| — is less than
one.
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Graphically, we would plot the stability limits for the timediscretization in the
complexλ∆t plane, then overlay curves showingλk∆t (∆x,φk) for the space dif-
ferencing scheme for various non-dimensional times. Although less precise than
analytic methods, the graphical approach is generally easier.

5.6 Examples

5.6.1 Upwind flux with explicit Euler time advance

We know from Section 3.5 that the eigenvalues for this spatial operator are:

λk =
u

∆x

(

eIφk−1
)

=
u

∆x
(−1+cosφk− I sinφk)

This is a circle of radiusu
∆x centered at

(

− u
∆x,0

)

.

Also, we know from Section 5.4.3 that the amplification factor for the explicit Euler
time advance scheme is:

|σ |=
√

(ℜ(λ )∆t+1)2+(ℑ(λ )∆t)2

This quantity is less than one for anyλ∆t that falls within a circle of radius 1
centered at(−1,0). Therefore, the scheme is stable (|σ | < 1) if and only if u∆t

∆x <

1. The parameteru∆t
∆x is called theCFL number, after three guys named Courant,

Friedrichs, and Levy.

5.6.2 Centered flux with explicit Euler time advance

Using a result from Problem 5.2, we know the eigenvalues of this spatial operator:

λk =
u

2∆x

(

eIφk−e−Iφk

)

=
u

∆x
I sinφk

These eigenvalues lie on the imaginary axis, and therefore outside the stability range
of the Euler time advance scheme (see Section 5.4.3) for any time step.
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5.7 Problems

1. Eigenvalues for the fourth-order accurate Laplacian operator.

Suppose that we use the fourth-order accurate Laplacian fluxanalyzed earlier
in class to discretize the heat equation.3 This gives us

∂ T̄
∂x i

= α
−T̄i+2+28T̄i+1−54T̄i +28T̄i−1− T̄i−2

24∆x2

Find the banded periodic matrix associated with using this discretization on
a periodic mesh, and find the eigenvalues of that matrix. Do these eigenval-
ues fall into the same range as those for the second-order accurate Laplacian
space discretization?

2. Eigenvalues for centered flux for the wave equationSuppose that we choose

to evaluate the flux for the wave equation by usingTi+ 1
2
≈
(

Ti+Ti+1
2

)

; this is

second-order accurate. Write the semi-discrete form of thewave equation us-
ing this flux approximation and find the eigenvalues associated with the space
scheme.

3. Upwind Extrapolated Flux for the Wave Equation If we use two control
volumes upstream of an interface to estimate the flux for the wave equation,
we get

Ti+ 1
2
≈ 3T̄i− T̄i−1

2
which is second-order accurate. Write the semi-discrete form of the wave
equation using this flux approximation and find the eigenvalues associated
with the space scheme. Plot these eigenvalues in the complexplane (remove
the factor of u

∆x before plotting).

4. Trapezoidal scheme. The trapezoidal scheme approximates the model ODE
using a centered approximation for the data on the RHS:

wn+1−wn

∆t
= λ

wn+1+wn

2
3Note that this discretization is in terms of theaveragevalues in the control volumes. A finite-

difference discretization, which assumes point-wise values of the solution at mesh points would give
a different discretization. The reasons for the differenceare somewhat technical, but hinge on the
fact that the finite-volume flux implicitly assumes a cubic variation in the solution. This assumption
has specific implications for the difference between the average value in the control volumēTi and
the value at the center of celli, T(xi), which in turn account for the difference between the finite
difference and finite volume discretizations.



46CHAPTER 5. TIME ACCURACY AND STABILITY ANALYSIS FOR ORDINARY DIFFERENTIAL

Find the amplification factor for this scheme, and plot it. Where in the com-
plex plane is the scheme stable?

5. Fourth-order accurate Runge-Kutta scheme. Analyze the fourth-order
Runge-Kutta scheme given in Equation 5.9. Find and plot the amplification
factor. Determine which region in your plot is the one where the scheme is
stable.

6. Extrapolated upwind flux with two-stage Runge-Kutta time advance.
The space scheme of Problem 3.7 and Problem 5.3 is second-order accurate
in space, and will give a fully-discrete scheme that is second-order accurate
when used in combination with the second-order Runge-Kuttatime advance
scheme. Combine the eigenvalues for this scheme (either graphically or ana-
lytically) with the amplification factor for the two-stage Runge-Kutta scheme
of Section 5.4.5 to find the time step limit for the combined scheme.

7. Heat equation, second-order in space, explicit Euler in time. Suppose
we wanted to use the second-order accurate Laplacian discretization in space
and the explicit Euler time advance scheme (Section 5.4.3) to solve the heat
equation. Using results from Section 5.4.1 and 5.4.3, find the amplification
factor for this fully-discrete scheme and determine the maximum stable time
step.

8. Heat equation, fourth-order accurate in space, implicit Euler in time.
Repeat Problem 5.7 using the fourth-order accurate spatialdiscretization of
Problems 3.3 and 5.1 and the implicit Euler time advance scheme.



Chapter 6

Systems of PDE’s

We’ve talked all term about linear, scalar model equations,because these are easier
to analyze and understand than non-linear systems of equations. Now it’s time to
take the plunge and look at systems of equations. Instead of asingle unknown
u, we now have a vector of unknownsU at each point. This vector might be
as simple(u, v, w, P)T for the incompressible flow equations or something like
(ρ , ρu, ρv, ρw, E, Ev, ρO2, ρN, ρO, ρNO)

T for a compressible reacting air calcula-
tion, whereEv is the energy in vibrational modes and the subscripted densities are
species densities. Or it might be something even more complicated.

The evolution of these unknowns depends on flux vectorsF, G, andH, (in thex-, y-,
andz-directions, respectively) and on a source vectorS, all of which are (possibly
non-linear) functions ofU .

dŪi, j ,k

dt
+
∮

∂CV





Fî
Gĵ
Hk̂



 · n̂dA= S̄i, j ,k (6.1)

For the incompressible flow case above, the flux vectorF might be(u2+P, uv, uw, u/β )T ;
this corresponds to a method known asartificial compressibility. For the reacting air
problem, the flux vector would be

(

ρu, ρu2+P, ρuv, ρuw, u(E+P), uEv, ρO2u, ρNu, ρOu, ρNOu
)T

.

Systems of equations are discretized in much the same way as scalar equations. For
example, we can discretize the one-dimensional equivalentof Equation 6.1 as

Un+1
i −Un

i

∆t
=−

Fn
i+ 1

2
−Fn

i− 1
2

∆x
+Sn

i (6.2)
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Fluxes ati + 1
2 can be calculated using the same approaches we’ve already dis-

cussed.

This discretization uses the explicit Euler time advance scheme. From our study
of model equations, we know the stability region for this time advance scheme. To
prove (or disprove) the stability of a linear system of PDE’s, “all” we would need to
do is find the eigenvalues of the system of equations implied by Equation 6.2; this
would lead us to a stability bound just as similar analysis did for the scalar case.
For non-linear systems, things are more complicated; a goodgeneral rule is that the
stability bound will be lower for non-linear problems than for the linearization of
the same non-linear problem.

The explicit case is simple to implement; all that need be done is to compute the
fluxes and take differences of them. However, for systems just as for scalar equa-
tions, explicit schemes often prove to be inefficient. A simple implicit discretization
of the conservation law would be

Un+1
i −Un

i

∆t
=−

Fn+1
i+ 1

2
−Fn+1

i− 1
2

∆x
+Sn+1

i (6.3)

The catch is thatFn+1
i+ 1

2
is a function of (for example)Un+1

i andUn+1
i+1 . However, we

can approximate

Fn+1
i+ 1

2
≡ F (Ui,Ui+1)

n+1≈ F (Ui,Ui+1)
n+∆t

∂F (Ui ,Ui+1)

∂ t

∣

∣

∣

∣

n

+O
(

∆t2)

and
∂F (Ui,Ui+1)

∂ t

∣

∣

∣

∣

n

=
∂F
∂Ui

∂Ui

∂ t

∣

∣

∣

∣

n

+
∂F

∂Ui+1

∂Ui+1

∂ t

∣

∣

∣

∣

n

(6.4)

by the chain rule.

We can re-write Equation 6.3 inδ -form as
(

I
∆t

+
1

∆x
∂F(Ui ,Ui+1)

∂Ui

∣

∣

∣

∣

n

− 1
∆x

∂F(Ui−1,Ui)

∂Ui

∣

∣

∣

∣

n

− ∂S
∂U

∣

∣

∣

∣

n

i

)

δUn+1
i

+
1

∆x
∂F(Ui ,Ui+1)

∂Ui+1

∣

∣

∣

∣

n

δUn+1
i+1 −

1
∆x

∂F(Ui−1,Ui)

∂Ui−1

∣

∣

∣

∣

n

δUn+1
i−1 = −

Fn
i+ 1

2
−Fn

i− 1
2

∆x
+Sn

i(6.5)

In hope of shedding some light on this, let’s look at a specificexample whereF
andU are both scalars. For the energy equation,U = T and the flux can be written
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asF = uTi+Ti+1
2 −α Ti+1−Ti

∆x , using centered evaluation of the advective flux. Then
Equation 6.4 can be written for this case as:

∂F (Ui,Ui+1)

∂ t

∣

∣

∣

∣

n

=
(u

2
+

α
∆x

)n ∂Tn
i

∂ t
+
(u

2
− α

∆x

)n ∂Tn
i+1

∂ t

and the fully implicit discretization can be written as

(

1
∆t

+
1

∆x

(u
2
+

α
∆x

)

− 1
∆x

(u
2
− α

∆x

)

− ∂S
∂U

∣

∣

∣

∣

n

i

)

δUn+1
i

+
1

∆x

(u
2
+

α
∆x

)

δUn+1
i+1 −

1
∆x

(u
2
− α

∆x

)

δUn+1
i−1 = −

Fn
i+ 1

2
−Fn

i− 1
2

∆x
+Sn

i

This is more or less the result we expected.

There are two major things that we need to know before we can solve the system of
equations posed by Equation 6.5: how to compute theJacobians∂F

∂U and ∂S
∂U , and

how to solve the algebraic equations that arise.

6.1 Computation of Flux and Source Jacobians

So we have a vector functionF(Ui,Ui+1) and we need to know the partial deriva-
tives of the components ofF with respect to the components ofUi. For this purpose,
we can treat the components ofUi+1 as constants and write simplyF = F(U). In
general, all components of the fluxF depend on all components of the stateU . That
is,

F(U) =















F1(U1,U2,U3, . . . ,Um)
F2(U1,U2,U3, . . . ,Um)
F3(U1,U2,U3, . . . ,Um)

...
Fm(U1,U2,U3, . . . ,Um)














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One must always write the components ofF explicitly in terms of components of
U before computing

∂F
∂U

=



















∂F1
∂U1

∂F1
∂U2

∂F1
∂U3

· · · ∂F1
∂Um

∂F2
∂U1

∂F2
∂U2

∂F2
∂U3

· · · ∂F2
∂Um

∂F3
∂U1

∂F3
∂U2

∂F3
∂U3

· · · ∂F3
∂Um

...
...

...
. . .

...
∂Fm
∂U1

∂Fm
∂U2

∂Fm
∂U3

· · · ∂Fm
∂Um



















And that, believe it or not, is that. Note that the subscriptsin these equations repre-
sent the component of the flux vectorF or the vector of unknownsU , not anything
do to with the spatial discretization.

6.1.1 Example: Nearly the compressible Euler equations

Consider the following very simple case (compressible massand momentum con-
servation with no pressure term):

U =





ρ
ρu
ρv



 F =





ρu
ρu2

ρuv





The first step is to re-write components ofF in terms of components ofU :

F =





ρu
ρu2

ρuv



=







U2
U2

2
U1

U2U3
U1







From here on things are straightforward:

∂F
∂U

=









0 1 0

−U2
2

U2
1

2U2
U1

0

−U2U3
U2

1

U3
U1

U2
U1









=





0 1 0
−u2 2u 0
−uv v u







6.1. COMPUTATION OF FLUX AND SOURCE JACOBIANS 51

6.1.2 Example: the compressible Euler equations

Compute the Jacobian for the following case:

U =





ρ
ρu
E



 F =





ρu
ρu2+P
u(E+P)





whereP=
(

E− 1
2ρu2

)

(γ−1). Remember to first write components ofF in terms
of components ofU .
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6.2 Problems

1. Source Jacobian for One-Dimensional Flow of Dissociating Oxygen Con-
sider the case of one-dimensional compressible flow of oxygen with dissoci-
ation but no ionization. The species present in the flow areO2 andO. The
governing equation for this problem is

∂U
∂ t

+
∂F
∂x

= S

where

U =









ρ
ρu
E
ρO









F =









ρu
ρu2+P
u(E+P)

uρO









and

S=











0
0

wO

(

H0
ρO
−RT

)

wO











Several notes are in order.

• Don’t worry too much about understanding the physics of thisproblem,
for two reasons. First, the physics is grossly over-simplified from the
real world and therefore isn’t worth a huge amount of effort.Second,
the problem can be done by manipulating things algebraically without
knowledge of the underlying physics.

• The energyE is defined as:

E =

(

3
2

RT+H0
ρO

)

ρO+
5
2

RTρO2 +
ρu2

2

whereH0
ρO

is the chemical heat of formation of monatomic oxygen.
The internal energy expressions forO andO2 differ becauseO2, as a
diatomic molecule, has rotational and vibrational energy modes which
O does not have.
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• The pressureP is defined asP= ρRT.

• The mass density ofO2 is not solved for explicitly, but instead is rep-
resented asρO2 = ρ −ρO. The choice of computingρO2 by subtraction
is made because the mass fraction ofO2 is expected to be close to one;
subtracting in this way reduces round-off errors.

• The creation of monatomic oxygen is given by

wO = (ρO2−ρO)Aexp(−BT)

• Clearly it would be a lot easier to compute Jacobians using temperature
instead of energy as a dependent variable. That is, using

V =









ρ
u
T
ρO









in place ofU .

Find the flux and source Jacobians (∂F
∂U and ∂S

∂U , respectively). You will probably

want to take advantage of the chain rule. If you know∂U
∂V and ∂S

∂V , how can you find
∂S
∂U without analytically deriving it? (This is often a useful trick, as some variable
transformations have treacherous Jacobians in one direction but not the other.
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Chapter 7

Practical Aspects of Solving Poisson’s
Equation

7.1 Solving the Discrete Poisson Equation

Suppose we want to solve Poisson’s equation on the unit square

∂ 2T
∂x2 +

∂ 2T
∂y2 = S(x,y) (x,y)ε [0,1]× [0,1]

We’ll talk about boundary conditions later. In the interiorof the domain, we can
discretize the equation by

T̄i+1, j −2T̄i, j + T̄i−1, j

∆x2 +
T̄i, j+1−2T̄i, j + T̄i, j−1

∆y2 = Si, j (7.1)

This discretization is second-order accurate in bothx andy, which you can all easily
verify at this point. If we write Equation 7.2 for every pointin the mesh, we get
a matrix equation of sizeN ≡ imaxjmax. In particular, for a 4-by-4 mesh with no
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source term, we get:
























































D X Y
X D X Y

X D X Y
X D Y

Y D X Y
Y X D X Y

Y X D X Y
Y X D Y

Y D X Y
Y X D X Y

Y X D X Y
Y X D Y

Y D X
Y X D X

Y X D X
Y X D

















































































































T̄1,1

T̄2,1

T̄3,1
T̄4,1

T̄1,2

T̄2,2

T̄3,2

T̄4,2
T̄1,3

T̄2,3

T̄3,3
T̄4,3

T̄1,4
T̄2,4

T̄3,4

T̄4,4

























































= 0

(7.2)
whereX ≡ 1

∆x2 ,Y ≡ 1
∆y2 , andD = −2(X+Y). Note that the diagonals withY’s in

them are separated from the main diagonal (with theD’s) by imax entries.

There are at least four ways to solve this huge matrix equation:

1. Direct inversion via Gaussian elimination, LU decomposition, etc. This is
expensive. Even using the bandedness of the matrix, we stillrequire in gen-
eralO

(

i3maxjmax
)

operations for direct inversion. As mesh sizes increase, this
soon becomes impractical.

2. Krylov subspace methods for solving linear systems seek to find a linear
combination of vectors which minimize the residual~R≡ [A]~x−~b for a ma-
trix equation; this linear combination is used to update~x. Examples of such
solvers include GMRES and BICGSTAB. These methods are fairly memory
intensive and generally require a reasonable approximate inverse to a matrix
as a pre-conditioner. While these solvers are very effective, they are also quite
complex, and we aren’t going to discuss them.

3. Point and line iterative methods don’t pretend to be able to get the right an-
swer in a single pass. They act by updating the solution at onepoint or along
one line in the mesh at a time. Many iterations are required toconverge, but
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each iteration is very cheap. The drawback to many of these methods is that
they are extremely bad at damping long-wavelength errors inthe solution.

4. Multigrid methods are typically used in conjunction withsimple iterative
methods. An iterative method is used to damp the highest frequency errors.
Then the remaining error is used to drive a Poisson problem ona mesh with
half as many points in each direction. When this problem has been solved,
perhaps by using multigrid recursively, a correction is interpolated back to the
fine mesh. Both in theory and in practice, a well-designed multigrid method
can solve Laplace’s equation to machine zero in a computational cost equiv-
alent to around ten applications of the iterative method used on the finest
mesh.

All of these techniques can also be used to solve the systems of equations arising
from discretization of the Navier-Stokes equations — and all of them have been
used successfully.

7.1.1 Iterative Methods for Poisson’s Equation

We’ve discretized Poisson’s equation as

T̄i+1, j −2T̄i, j + T̄i−1, j

∆x2 +
T̄i, j+1−2T̄i, j + T̄i, j−1

∆y2 = Si, j (7.3)

We can solve this for̄Ti, j :

T̄i, j
2∆x2+2∆y2

∆x2∆y2 =
T̄i+1, j + T̄i−1, j

∆x2 +
T̄i, j+1+ T̄i, j−1

∆y2 −Si, j

Usingk as an index for the iteration number, the simplest choice we could make in
an iteration scheme would be Point Jacobi method

T̄k+1
i, j =

∆y2

2(∆x2+∆y2)

(

T̄k
i+1, j + T̄k

i−1, j

)

+
∆x2

2(∆x2+∆y2)

(

T̄k
i, j+1+ T̄k

i, j−1

)

−Si, j
∆x2∆y2

2(∆x2+∆y2)
(7.4)

To compute all new values of̄Tk+1
i, j , we would sweep through the entire mesh.

This scheme requires storage for two copies ofT̄. We can both reduce storage and
(it turns out) improve efficiency by using the latest available data while sweeping
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through the mesh. If we sweep in order of increasingi and then increasingj,1 our
iteration scheme would formally look like: Point Gauss-Seidel

method

T̄k+1
i, j =

∆y2

2(∆x2+∆y2)

(

T̄k
i+1, j + T̄k+1

i−1, j

)

+
∆x2

2(∆x2+∆y2)

(

T̄k
i, j+1+ T̄k+1

i, j−1

)

−Si, j
∆x2∆y2

2(∆x2+∆y2)
(7.5)

This looks harder to code, but it isn’t. With only one array tostoreT̄, the data to
computeT̄k+1

i, j automatically comes from the iteration levels in Equation 7.5. The
point Gauss-Seidel scheme can be shown both analytically and computationally to
be more efficient than point Jacobi.

One thing that quickly becomes apparent when looking in detail at the computa-
tional behavior of these schemes is that the update to the solution is always smaller
that it needs to be. A logical thing to try, then, is to increase the update by some
factor. When applied to point Gauss-Seidel, this results inthe following scheme:SOR

δ k+1
i, j =

∆y2

2(∆x2+∆y2)

(

T̄k
i+1, j + T̄k+1

i−1, j

)

+
∆x2

2(∆x2+∆y2)

(

T̄k
i, j+1+ T̄k+1

i, j−1

)

−Si, j
∆x2∆y2

2(∆x2+∆y2)
− T̄k

i, j

T̄k+1
i, j = T̄k

i, j +ωδ k+1
i, j (7.6)

This scheme is referred to as successive over-relaxation (SOR); the over-relaxation
parameter,ω, must be less than two for the iterative scheme to be stable.

Test case:Solve Laplace’s equation with boundary conditionsT(x,0) = T(0,y) =
0,T(x,1)= sin(πx/2), andT(1,y)= sin(πy/2) and initial guess of 0. At this point,
we aren’t worried about the exact solution, but only about the rate of convergence.
This is commonly measured by computing norms of the change inthe solution from
one iteration to the next. For point Jacobi, point Gauss-Seidel, and point Gauss-
Seidel with SOR (ω = 1.8), theL1 norm of the change in solution is shown in
Figure 7.1. Notice that the point Jacobi scheme appears to converge faster initially
(say the first 50 iterations or so). This is an illusion. The point Jacobi scheme is so
local in its effect that this initially-fast convergence merely reflects the slow rate at
which information “propagates” via the iterative scheme. This corresponds to very
poor damping rates for low-frequency (long wavelength) errors.

1That is, with loops like this:
for j = 1, jmax

for i = 1, imax
...

end for
end for
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Figure 7.1: Comparison of convergence rates for point iterative schemes applied to
Laplace’s equation.

One can also solve simultaneously for all values along a linein the mesh. For
example, we could obtain all thēTk+1

i, j with the same value ofi by solving this
equation: Line Gauss-Seidel

method

− ∆x2

2(∆x2+∆y2)
δ k+1

i, j+1+δ k+1
i, j

− ∆x2

2(∆x2+∆y2)
δ k+1

i, j−1 =
∆x2

2(∆x2+∆y2)

(

T̄k
i, j+1+ T̄k

i, j−1

)

(7.7)

+
∆y2

2(∆x2+∆y2)

(

T̄k
i+1, j + T̄k+1

i−1, j

)

−Si, j
∆x2∆y2

2(∆x2+∆y2)
− T̄k

i, j(7.8)

T̄k+1
i, j = T̄k

i, j +ωδ k+1
i, j

This equation presumes that we are marching across lines in the order of increasing
i, so that data ati−1 is available while we are solving along linei. Successive over-
relaxation can be used with this scheme by setting 1< ω < 2. Figure 7.2 compares
the convergence rates of line and point Gauss-Seidel iterative methods. The line
methods clearly require fewer iterations. However, line iterations take about three
times as long as point iterations, so the point methods are faster for this problem.
In general, line iterative schemes are very effective when applied along a direction
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of strong coupling — for example, across the boundary layer in a viscous flow
simulation. Where coupling is less strong (as in this case for the Laplace equation),
line methods are less effective. Line methods also become relatively more efficient
when the number of mesh points rises because information is “propagated” faster
by the iterative scheme.
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Figure 7.2: Comparison of convergence rates for point and line Gauss-Seidel itera-
tive schemes applied to Laplace’s equation.

7.2 Boundary Conditions for the Laplacian

Learning Objectives. Students will be able to:

• Describe how to implement Neumann, Dirichlet, and mixed boundary condi-
tions for Poisson’s equation in finite-volume form.

There are (at least) three categories of boundary conditions for PDE’s: those that
prescribe the solution on the boundary (Dirichlet conditions), those that prescribe
the gradient of the solution on the boundary (Neumann conditions), and those that
prescribe some relationship between the solution and its gradient on the bound-
ary (mixed conditions). When solving Laplace’s equation for a temperature field,
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these correspond to fixed temperature, fixed heat flux, and convection or radiation
boundary conditions respectively.

7.2.1 Neumann (Fixed Heat Flux) Boundary Condition

In the finite-volume formulation, we compute the integral ofthe flux around each
control volume. This makes it trivial to impose Neumann boundary conditions. For
example, in Figure 7.3, the flux integral is computed as usual, except that the flux
along thei, j− 1

2 side of the finite volume is replaced by the prescribed boundary
flux — in this case, the most common value of zero is shown as an example.

����������������
����������������
����������������
����������������

F=0

i,j

Figure 7.3: Finite volume with homogeneous Neumann boundary condition im-
posed along once side.

7.2.2 Dirichlet (Fixed Temperature) Boundary Condition

The situation is more complex when we are faced with a Dirichlet boundary con-
dition, because we have no way of directly imposing a value onthe solution at the
boundary. We could set the value in celli, j of Figure 7.3 to the given wall value, but
this is physically incorrect. Why? Because the solution value stored for celli, j is
theaverage valueover that control volume. Imposing — for example —T = 300K
at the wall is not at all the same as saying that the average value of temperature
in the control volume next to the wall is 300K; any solution with a temperature
gradient will be adversely affected by this incorrect boundary condition.
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What we need to do for the control volumes next to the wall is tocompute a physi-
cally correct flux at the wall. To do this, we need to compute a temperature gradient
at the wall. There are two straightforward ways to do this; the results are identical
mathematically, but they are programmed differently.

��������������������������������

i,j

ghost

T=T0

Figure 7.4: Boundary cell showing Dirichlet boundary condition and ghost cell.

Approach 1: One-sided differences

One choice for computing the flux ati, j− 1
2 is to use one-sided differences. That

is, compute
∂T
∂y

∣

∣

∣

∣

i, j− 1
2

=
Ti, j −Tw

∆y/2

and use this flux when computing the flux integral.

Approach 2: Ghost cells

Another choice is to create aghost cellat i, j −1. This ghost cell lies outside the
computational domain, so any solution value we assign to it is purely fictitious
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except for its role in enforcing the boundary condition. If we set the temperature in
this ghost cell by linear extrapolation usingTi, j andTw, we will get a temperature
in the ghost cell of

Ti, j−1 = 2Tw−Ti, j

Using this value to compute the flux at the boundary results in

∂T
∂y

∣

∣

∣

∣

i, j− 1
2

=
Ti, j −Ti, j−1

∆y
=

Ti, j −2Tw+Ti, j

∆y
=

Ti, j −Tw

∆y/2

The flux is the same.

The difference lies in how one chooses to program the boundary conditions. One-
sided differencing requires a change in the way the flux is calculated for the bound-
ary; ghost cells require an additional row of cells and some work to set values in
these cells, but flux calculations are the same at the domain boundary as at interior
control volume boundaries.
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Chapter 8

The Wave Equation

In previous chapters, we have discussed several space and time discretization schemes
for the wave equation. In this chapter, we will look at the last issue remaining for
the wave equation: boundary conditions. Then we will look atsome sample solu-
tion for the wave equation using simple schemes, and finally explore some more
advanced schemes for the wave equation that are more successful in the face of
real-world complications.

The one-dimensional wave equation,∂T
∂ t +u∂T

∂x = 0, is very different from the Pois-
son and energy equations. Specifically,

• The wave equation is a hyperbolic PDE, whereas Poisson’s equation is elliptic
and the energy equation is parabolic. (See Section B.1 for anexplanation of
these terms.)

• The wave equation has fluxes that depend on thesolution, whereas Poisson’s
equation has fluxes that depend on thegradient of the solution, and the energy
equation has fluxes of both types.

• The wave equation and the energy equation are both time-dependent, but the
wave equation, as we shall see, has a much less severe time step restriction
than the energy equation.

65
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8.1 Boundary Conditions for the Wave Equation

We have discussed in detail how to compute fluxes for the wave equation in the
interior of a computational domain. What should one do at theboundaries? Let us
consider first the analytic problem for a finite domain, whichis properly posed as:

∂T
∂ t

+u
∂T
∂x

= 0

0≤ x≤ L 0≤ t

T(x,0) = f (x)

T(0, t) = g(t)

The exact solution to this problem is

T(x, t) =

{

f (x−ut) x> ut
g
(

t− x
u

)

x< ut

Three key observations are appropriate here.

1. The solution propagates strictly from left to right, which implies that fluxes
should be calculated using data from the left (“upwind”) so that the numerical
solution will behave in the same way as the mathematical solution. This also
explains the lack of a boundary condition at the right boundary. For strictly
upwind schemes, we can evaluate the flux atimax+ 1

2
just as the normal interior

fluxes for use in the flux integral for CVimax.

2. The flux at32 can not always be evaluated using the interior flux scheme (no-
tably for second-order upwind schemes).

3. The boundary condition atx= 0 is sufficient for us to compute the flux there,
although this flux varies in time.

8.1.1 Flux evaluation at32 (first interior interface)

For the second-order upwind scheme and its close variants, this flux would be eval-
uated by using extrapolation to estimate

T3
2
≈ 3T̄1− T̄0

2
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Alas, we do not have a control volume 0 to use in this context. We could choose to
use a first-order accurate flux here (e.g.,T3

2
≈ T̄1), or we could choose to use a cen-

tered flux evaluation
(

i.e., T3
2
= T̄2+T̄1

2

)

. We could also extrapolate the temperature

using the boundary condition evaluated at an appropriate time:

T3
2
≈ 2T̄1−g(t)

Equivalently, and possibly easier to code, we could use a ghost cell and set

T0 = 2g(t)− T̄1

8.1.2 Flux evaluation atx= 0

At x = 0, the flux is known from the boundary condition, becauseT(0, t) = g(t).
In practice, this means that we have to be careful to evaluatethe flux at the correct
time, which is always the same time as the flux integral is evaluated. For example,
for the first-order explicit Euler time advance scheme, the flux integral is evaluated
at time leveln, so we useTn

1
2
= T(x= 0,n∆t) = g(n∆t).

At what time should the boundary flux be evaluated for each stage of the two-
stage Runge-Kutta scheme of Section 5.4.5? What about the four-stage scheme of
Problem 5.5?

8.2 Basic Results for the Wave Equation

Consider a simple test case for the wave equation: propagation of a sine wave at
unit speed in the domain[0,1] on a mesh of forty control volumes with periodic
boundary conditions until timet = 1. At this time, the wave should be back to
precisely its starting position.

Suppose that we use explicit Euler time advance and three space discretization
schemes: first-order upwind, second-order upwind, and second-order centered. In
each case, the CFL number is 0.75, except for the second-order upwind discretiza-
tion, where CFL = 0.375. Figure 8.1 shows the results for thistest. For this time
advance method, both the centered and second-order upwind discretizations are
unstable. Almost as bad is the first-order upwind scheme, which damps out the
solution rather quickly.
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Figure 8.1: First-order time advance for the wave equation with several space dis-
cretizations

Suppose that we replace the explicit Euler time discretization with the second-order
Runge-Kutta time advance scheme, leaving everything else the same. The result of
propagating a sine wave with this time advance scheme is shown in Figure 8.2. The
first-order upwind discretization gives even poorer results here than for the previous
case. The second-order accurate schemes both do quite well,although the centered
scheme is still ever so slightly unstable. The reason that this instability is not yet
visible is that the amplification factor is very near one. Note also that the second-
order upwind scheme has what is known as a leading phase errorfor these wave
length: the wave propagates a bit faster than it should.

Now that we have a scheme1 that works well for this case for the wave equation,
are we done? No. Suppose we were to propagate a square wave instead of a sine
wave (see Figure 8.3). The centered difference scheme is clearly unstable, and
the first-order upwind scheme is clearly damping the solution very rapidly. The
second-order upwind scheme is nottoobad in comparison, except for the presence
of significant overshoots.

If we use a much finer mesh with the second-order upwind scheme, we don’t get
results that look any better, as shown in Figure 8.4.

1Or two, if our simulations are short enough that the unstablecentered scheme is okay.
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Figure 8.2: Second-order time advance for the wave equationwith several space
discretizations
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Figure 8.3: Second-order time advance for the wave equationpropagating a square
wave.
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Figure 8.4: Effect of mesh refinement on square wave propagation using the second-
order upwind scheme.

Clearly, something needs to be done about this problem, but what?

8.3 Advanced Schemes for the Wave Equation

8.3.1 Limited Extrapolation

Limited extrapolation seeks to eliminate overshoots and undershoots in the solution
of the wave equation by not allowing new local extrema to arise in extrapolating to
compute the flux ati + 1

2. That is, if

Ti+ 1
2
=

3T i−T i−1

2
> max

(

T i ,T i+1
)

thenTi+ 1
2

is replaced by max
(

T i ,T i+1
)

. Likewise, if

Ti+ 1
2
=

3T i−T i−1

2
< min

(

T i ,T i+1
)
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thenTi+ 1
2

is replaced by min
(

T i ,T i+1
)

. Another way of putting this mathematically
is

Ti+ 1
2
=











max
(

T i,T i+1
)

if 3T i−T i−1
2 > max

(

T i ,T i+1
)

min
(

T i ,T i+1
)

if 3T i−T i−1
2 < min

(

T i ,T i+1
)

3T i−T i−1
2 otherwise

Yet another choice is to write this as a single series of max’sand min’s:

Ti+ 1
2
= max

(

min
(

T i ,T i+1
)

,min

(

3T i−T i−1

2
,max

(

T i ,T i+1
)

))

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Figure 8.5: Example control-volume averaged solution

In Figure 8.5, the limiter will clearly be active at 41
2 and 1012, to prevent the increase

of a local maximum and decrease of a local minimum, respectively. The value used
at 31

2 will be limited to for the same reason. The value used at 61
2 will be limited to

the common value in control volumes 6 and 7. Finally — and mostsubtly — the
value at 812 without limiting would be lower than the CV average value in CV 9,
although higher than in CV 10; this value would be limited to exactly the average
in CV 9.

8.3.2 Total-Variation Diminishing (TVD) Schemes

The total variation of a solution in one dimension is defined as the sum of the
absolute values of the change in solution between successive extrema. Referring
again to Figure 8.5, the total variation in this solution would be

TV = (T̄4− T̄1)+(T̄4− T̄10)+(T̄14− T̄10) (8.1)
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Total-variation diminishing (TVD) schemes have the property that, while individual
extrema may get higher or lower, the total variation is non-increasing. That is, the
value ofT̄10 might drop, but the total variation of Equation 8.1 would notincrease.
This implies that either̄T1 must increase or̄T4 or T̄14 must decrease.

Upwind TVD schemes use a flux that (for the wave equation withu = 1) can be
written as

Fi+ 1
2
= u

[

T̄i +
ψi+ 1

2

2
(T̄i− T̄i−1)

]

(8.2)

Note that forψi+ 1
2
= 0 this reduces to the first-order upwind flux, while forψi+ 1

2
=1

we get the second-order upwind flux. The key element of upwindTVD schemes is
the definition ofψ; this determines how much anti-diffusion to use (and therefore
how much diffusion remains).ψi+ 1

2
is written as a function of

r i+ 1
2
≡ T̄i+1− T̄i

T̄i− T̄i−1

It can be shown that the acceptable range forψ is the region outlined in Figure 8.6.
Values ofr less than zero indicate that CVi is a local extremum; hereψ must be
zero to avoid accentuating the extremum.
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Figure 8.6: Legal values ofψ(r) for TVD schemes

If r lies between 0 and 1, the magnitude of the slope is decreasingfrom i− 1 to
i to i +1, as fori = 3 in Figure 8.5. For the maximum allowable value ofψ, 2r,
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Equation 8.2 reduces to

Fi+ 1
2

= u

[

T̄i +
2r i+ 1

2

2
(T̄i− T̄i−1)

]

= u

[

T̄i +
T̄i+1− T̄i

T̄i− T̄i−1
(T̄i− T̄i−1)

]

= uT̄i+1

This applies only in cases where the simple extrapolation (ψ = 1) creates a new
extremum

(

r ≤ 1
2

)

. For larger values ofr, the extrapolation can be used without
limiting. The lower boundary of the TVD region for decreasing slope,ψ = r, cor-
responds to using a central flux:

Fi+ 1
2
= u

T̄i + T̄i+1

2

If r ≥ 1, the magnitude of the slope is increasing fromi−1 to i to i+1, as fori = 11
in Figure 8.5. For such control volumes, the second-order upwind scheme can be
used directly (ψ = 1). For moderate values ofr, (1≤ r ≤ 2), the centered scheme
(ψ = r) satisfies the TVD requirements, but discretizations with largely downwind
dependence do not. For larger (≥ 2), ψ is required to remain below 2. Forψ = 2,
the TVD flux becomes

Fi+ 1
2

= u

[

T̄i +
2
2
(T̄i− T̄i−1)

]

= u[2T̄i− T̄i−1]

This is the value one would obtain by extrapolating from CV’si and i−1 to the
center of CVi +1; consequently, this flux choice is more aggressive in steepening
smooth gradients than lower values ofψ.

Figure 8.7 showsψ as a function ofr for three cases. The limited extrapolation
scheme can be written as a TVD scheme with

ψ(r) =







0 if r ≤ 0
2r if r ≤ 1

2
1 otherwise

(8.3)

The Superbee scheme follows the top of the allowable range for ψ, making it the
most “compressive”, or slope-steepening, of all possible TVD schemes.ψ for this
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Figure 8.7: Three TVD limiters

case can be written as

ψ(r) =























0 if r ≤ 0
2r if r ≤ 1

2
1 if r ≤ 1
r if r ≤ 2
2 otherwise

(8.4)

Finally, van Leer’s scheme is a smoothly varying scheme withasymptotic behavior
for larger that matches Superbee:

ψ(r) =
r + |r|
1+ r

(8.5)

TVD schemes can be extended to higher dimensions by applyingthe flux calcula-
tion direction-by-direction. That is, in two dimensions, the flux ati + 1

2, j is calcu-
lated by using data fromi−1, j, i, j, and i +1, j. Likewise, the flux ati, j + 1

2 is
calculated by using data fromi, j−1, i, j, andi, j +1.

8.3.3 Flux-corrected Transport (FCT) Schemes

Flux-corrected transport schemes deliberately introduceenough numerical dissipa-
tion to produce monotone solutions, then cancel as much of that dissipation as possi-
ble without producing overshoots. The prototypical flux-corrected transport (FCT)
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scheme — called SHASTA — was designed as a second-order accurate method that
had been deliberately “broken” by the addition of extra dissipation. The flux for the
wave equation using this scheme is

Fi+ 1
2
= u

[

T̄i + T̄i+1

2
−
(

1
8
+

u∆t
2∆x

)

(T̄i+1− T̄i)

]

(8.6)

Without the velocity-independent dissipative flux, this isprecisely theLax-Wendroff
scheme, which can be shown to be second-order accurate in time and space.2 The
flux of Equation 8.6 is used to produce an interim solution at time leveln+1:

T̃n+1
i = T̃n

i −
u∆t
∆x

(

Fn
i+ 1

2
−Fn

i− 1
2

)

(8.7)

The first differences of the interim solution are computed:

∆i+ 1
2
= T̃n+1

i+1 − T̃n+1
i

and used to produce an anti-diffusive flux:

Fad
i+ 1

2
= S·max

(

0,min

(

S∆i− 1
2
,
1
8

∣

∣

∣
∆i+ 1

2

∣

∣

∣
,S∆i+ 3

2

))

whereS≡ sign
(

∆i+ 1
2

)

.

Note that the anti-diffusive flux has some similarities in form to the TVD diffusive
fluxes, in that in both cases, existing extrema are protectedby using a first-order
accurate monotone scheme at extrema. For smooth solutions,the anti-diffusive flux
is carefully designed to precisely cancel all of the diffusion added in the first step,
giving a scheme that is second-order accurate.

The solution at time leveln+1 is then computed using

T̄n+1
i = T̃n+1

i −
(

Fad
i+ 1

2
−Fad

i− 1
2

)

(8.8)

Despite having excellent properties in one dimension, flux-corrected transport schemes
are not popular in two or three dimensions, because the geometric interpretations
of advanced FCT anti-diffusive flux formulae do not generalize well.

2This proof uses different methods than we have discussed in class, because the Lax-Wendroff
scheme can not, strictly speaking, be derived using the semi-discrete formulation.
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8.3.4 Essentially Non-Oscillatory (ENO) Schemes

Simple extrapolation schemes for flux calculation for the wave equation, blindly ap-
plied, lead to overshoots and undershoots because extrapolation implicitly assumes
that there is a smooth underlying function to extrapolate — that the solution can be
expanded locally in a Taylor series. This is not true near discontinuities, and the
three previous families of schemes are all ways to fix the extrapolation so that it is
at least moderately well-behaved near discontinuities.

Essentially non-oscillatory (ENO) schemes take a different approach. Instead of
trying to fix a mathematically invalid Taylor series expansion, ENO schemes seek to
construct a valid extrapolation using smooth data. More precisely, an ENO scheme
of orderk produces an extrapolation that isk-th order accurate for smooth solutions
and has overshoots that are no larger thanO

(

∆xk−1
)

.

There are a number of variations in the details of how to accomplish this. I will out-
line a technique I developed for unstructured, multi-dimensional meshes. The sim-
plification to one-dimensional, equally-space meshes is more complex than some
other schemes, but not outrageously so.

Suppose that there are no discontinuities in the solution. Then computing a flux
using

Fi+ 1
2
= u

(

T̄i +
T̄i+1− T̄i−1

4

)

(8.9)

can be shown to be second-order accurate. Unfortunately, this approach allows
large overshoots near discontinuities. For example, in Figure 8.5, the extrapolated
value at 612 is an overshoot. Because the jump from CV 5 to CV 6 is ofO(1), so is
the overshoot. Suppose we rewrite Equation 8.9 as

Fi+ 1
2
= u

[

T̄i +
∆x
2

(

a
T̄i+1− T̄i

∆x
+(1−a)

T̄i− T̄i−1

∆x

)]

(8.10)

If a = 1
2, Equations 8.9 and 8.10 are identical. This flux is second-order accurate

for all values ofa, which gives us the freedom to choosea in order to prevent
overshoots from being too large.

Consider first the case of smooth extrema — where the numerical second derivative

lim
∆x→0

∆2T
∆x2 ≡

T̄i+1−2T̄i + T̄i−1

∆x2 → d2T
dx2
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is bounded and the one-sided differences

∆+T
∆x i

≡ T̄i+1− T̄i

∆x
∆−T
∆x i

≡ T̄i− T̄i−1

∆x

are also bounded. In this case, even though small overshootsmay be present, the
size of the overshoots can be shown to beO

(

∆x2
)

, which is acceptable for an ENO
scheme.

If there is a discontinuity ofO(1) betweeni and (say)i−1, on the other hand, the
numerical second derivative is not bounded:

lim
∆x→0

∆2T
∆x2 ≡

T̄i+1−2T̄i + T̄i−1

∆x2 ∼ 1
∆x2

One first derivative is bounded while the other is not:

∆+T
∆x i

≡ T̄i+1− T̄i

∆x
= O(1)

∆−T
∆x i

≡ T̄i− T̄i−1

∆x
∼ 1

∆x

We would prefer to ignore the data from the left-hand controlvolume, as it is clearly
(from a human viewpoint) irrelevant. To do this computationally, we must choose
a carefully. One simple function that works well is

w+ =
1

1+C
∣

∣

∣

∆2T
∆x2

∣

∣

∣

(

∆+T
∆x i

)2
∆x2

w− =
1

1+C
∣

∣

∣

∆2T
∆x2

∣

∣

∣

(

∆−T
∆x i

)2
∆x2

a =
w−

w++w−

It is easy to show that this choice ofa gives

• Equation 8.9 in smooth regions, where all finite differencesare bounded with
mesh refinement; more precisely,a→ 1

2 +O
(

∆x2
)

.
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• a→ 1−O
(

∆x2
)

when a discontinuity exists between control volumesi and
i +1; this is a one-sided extrapolation with (more difficult butstill provable)
small overshoots.

• a→O
(

∆x2
)

when a discontinuity exists between control volumesi andi+1;
this is a one-sided extrapolation from the other side.

Note that a particularly clever choice ofa would give you a third-order accurate flux
at the interface for smooth solutions. I personally don’t use this choice. My interest
in this problem comes from the area of reconstruction on multidimensional unstruc-
tured meshes, where the extension of this order increase is difficult or impossible,
so I don’t bother even in one dimension.

8.3.5 Sample Calculations

Figures 8.8–8.10 show the results of applying all these schemes to the wave equa-
tion with both square wave and sine wave initial data. In all cases, the boundary
conditions are periodic and the solution is advanced in timeuntil the wave has trav-
eled around the mesh exactly once.

For the square wave, either the Superbee TVD scheme or the SHASTA FCT scheme
gives the best results, with the others also performing fairly well. For the sine wave
problem, the ENO and FCT schemes give the best results because of their superior
performance near smooth extrema.

Which scheme is best overall? That’s a very hard call, especially on the basis of
only two test problems. Each approach has its strengths and weaknesses.Dan-
ger: What follows is opinion and should not be construed as a consensus among
researchers or practitioners in CFD. My personal favorite is the ENO schemes,
because I understand exactly how to generalize them to arbitrary meshes. While
generalization is also possible with TVD and FCT schemes, these generalizations
all seem more forced to me.
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Figure 8.8: Upwind TVD schemes (square wave)
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Figure 8.9: ENO and FCT schemes (square wave)
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Figure 8.10: Propagation of a smooth solution (sine wave)
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Chapter 9

The Incompressible Energy Equation

The incompressible energy equation is useful both in its ownright for predicting
energy transfer and to provide experience combining convective and diffusive terms
in the same governing equation before moving on to the Navier-Stokes equations,
which are mathematically similar in many ways but have the added complication of
being a coupled system of equations.

Also, the same equation can be used to model other physical processes. For exam-
ple, if T is interpreted as a chemical species concentration and the viscous dissi-
pation term on the right-hand side of the energy equation (see below) is replaced
by an appropriate source term, then the energy equation correctly model species
concentration in chemically reacting flow.

The differential form of the incompressible energy equation can be written as:

∂T
∂ t

+
∂uT
∂x

+
∂vT
∂y

=
1

Re·Pr

(

∂ 2T
∂x2 +

∂ 2T
∂y2

)

+
Ec
Re

(

2

(

∂u
∂x

)2

+2

(

∂v
∂y

)2

+

(

∂v
∂x

+
∂u
∂y

)2
)

Applying Gauss’s Theorem over an arbitrary fixed control volume, we can arrive at
the integral form of the energy equation:

∂ T̄
∂ t

A+

∮

∂CV
~vT ·~nds =

1
Re·Pr

∮

∂CV
∇T ·~nds

83
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+
Ec
Re

∫

CV

(

2

(

∂u
∂x

)2

+2

(

∂v
∂y

)2

+

(

∂v
∂x

+
∂u
∂y

)2
)

dA

For a finite volume in a 2D uniform mesh:

dT̄i, j

dt
∆x∆y

1
Re·Pr

(

∂T
∂x

i+ 1
2 , j

i− 1
2 , j

∆y+
∂T
∂y

i, j+ 1
2

i, j− 1
2

∆x

)

+(uT)
i+ 1

2 , j

i− 1
2 , j

∆y = +
Ec
Re

(

2

(

ui+1, j −ui−1, j

2∆x

)2

+2

(

vi, j+1−vi, j−1

2∆y

)2
)

∆x∆y

+(vT)
i, j+ 1

2

i, j− 1
2

∆x +
Ec
Re

(

vi+1, j −vi−1, j

2∆x
+

ui, j+1−ui, j−1

2∆y

)2

∆x∆y

Abbreviating the (constant) viscous dissipation terms asSi, j and combining the con-
vective and diffusive fluxes, we arrive at last at a fairly compact form of the equa-
tion.

dT̄i, j

dt
+

1
∆x

(

uT− 1
Re·Pr

∂T
∂x

)i+ 1
2 , j

i− 1
2 , j

+
1

∆y

(

vT− 1
Re·Pr

∂T
∂y

)i, j+ 1
2

i, j− 1
2

= Si, j (9.1)
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9.1 Simple Discretization of the Incompressible En-
ergy Equation
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9.2 Time Discretization of the Energy Equation

9.2.1 Implicit Euler time advance applied to the energy equa-
tion

If we write the energy equation in fully-discrete form usingthe implicit Euler time
advance scheme, we arrive at the following equation:

T̄n+1
i, j − T̄n

i, j

∆t
= − 1

∆x

(

ui+1, j T̄
n+1

i+1, j −ui−1, j T̄
n+1
i−1, j

2

− 1
Re·Pr

(

T̄n+1
i+1, j −2T̄n+1

i, j + T̄n+1
i−1, j

∆x

))

− 1
∆y

(

vi, j+1T̄n+1
i, j+1−vi, j−1T̄n+1

i, j−1

2

− 1
Re·Pr

(

T̄n+1
i, j+1−2T̄n+1

i, j + T̄n+1
i, j−1

∆y

))

+Si, j

In practice, we will typically want to write this in what is called δ -form by replacing
Tn+1

i, j ≡ Tn
i, j +δTn+1

i, j and simplifying.δ -form is much more convenient near steady
state, where round off errors in the calculation ofT can easily exceedδT, the
change inT from one time level to the next.

δT i, j

∆t
+

1
∆x

(

ui+1, jδT i+1, j −ui−1, jδT i−1, j

2

− 1
Re·Pr

(

δT i+1, j −2δT i, j +δT i−1, j

∆x

))

+
1

∆y

(

vi, j+1δT i, j+1−vi, j−1δT i, j−1

2

− 1
Re·Pr

(

δT i, j+1−2δT i, j +δT i, j−1

∆y

))
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= − 1
∆x

(

ui+1, j T̄n
i+1, j −ui−1, j T̄n

i−1, j

2
(9.2)

− 1
Re·Pr

(

T̄n
i+1, j −2T̄n

i, j + T̄n
i−1, j

∆x

))

− 1
∆y

(

vi, j+1T̄n
i, j+1−vi, j−1T̄n

i, j−1

2

− 1
Re·Pr

(

T̄n
i, j+1−2T̄n

i, j + T̄n
i, j−1

∆y

))

+ Si, j

The right-hand side is the flux integral evaluated at time level n.
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9.2.2 Trapezoidal time advance applied to the energy equation

The sole remaining difficulty is that we do not have data at time leveln+1 to evalu-
ate the fluxes on the right-hand side. We can, however, use Taylor series expansions
to write these fluxes in terms of data at time leveln. For example,

Fn+1
i+ 1

2 , j
= F

(

Un+1
i, j ,Un+1

i+1, j

)

= F
(

Un
i, j +δUi, j ,U

n
i+1, j +δUi+1, j

)

(9.3)
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= F
(

Un
i, j ,U

n
i+1, j

)

+
∂Fn

i+ 1
2 , j

∂Ui, j
δUi, j +

∂Fn
i+ 1

2 , j

∂Ui+1, j
δUi+1, j +O

(

(δU)2
)

(9.4)

where a two-variable Taylor series expansion is used between Equations 9.3 and 9.4.

This result requires that we calculate flux Jacobians: derivatives of the fluxes with
respect to the unknowns in nearby control volumes; see Section 6.1 for more infor-
mation about how to do this. The Jacobians we obtain are:

∂Fn
i+ 1

2 , j

∂Ui, j
=







0 1
2β 0

1
2

ui, j+ui+1, j
2 + 1

∆x·Re 0
0

vi, j+vi+1, j
4

ui, j+ui+1, j
4 + 1

∆x·Re







∂Fn
i+ 1

2 , j

∂Ui+1, j
=

















































∂Gn
i, j+ 1

2

∂Ui, j
=

















































∂Gn
i, j+ 1

2

∂Ui, j+1
=

















































where the inviscid and viscous parts have been combined.
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If we substitute the expanded fluxes into the fully-discreteequation, we get:

(

I
∆t

+
1

∆x

∂Fn
i+ 1

2 , j

∂Ui, j
− 1

∆x

∂Fn
i− 1

2 , j

∂Ui, j
+

1
∆y

∂Gn
i, j+ 1

2

∂Ui, j
− 1

∆y

∂Gn
i, j− 1

2

∂Ui, j

)

δUi, j

+
1

∆x

∂Fn
i+ 1

2 , j

∂Ui+1, j
δUi+1, j −

1
∆x

∂Fn
i− 1

2 , j

∂Ui−1, j
δUi−1, j = −

Fn
i+ 1

2 , j
−Fn

i− 1
2 , j

∆x

+
1

∆y

∂Gn
i, j+ 1

2

∂Ui, j+1
δUi, j+1−

1
∆y

∂Gn
i, j− 1

2

∂Ui, j−1
δUi, j−1 −

Gn
i, j+ 1

2
−Gn

i, j− 1
2

∆y

Multiplying by ∆t and labeling terms in an obvious way, we can write:

(I +∆t Bx+∆t By)δUi, j

+∆tCx δUi+1, j +∆t Ax δUi−1, j = −∆t
Fn

i+ 1
2 , j
−Fn

i− 1
2 , j

∆x
(9.5)

+∆tCy δUi, j+1+∆t AyδUi, j−1 −∆t
Gn

i, j+ 1
2
−Gn

i, j− 1
2

∆y

9.3 Approximate Factorization

We can re-write Equation 9.5 in a similar form to the one we used for the incom-
pressible energy equation by combining the various small matrices (A, B, andC)
into large matrices:

(I +∆tDx+∆tDy)































δU1,1

δU2,1
...

δUi−1, j

δUi, j

δUi+1, j
...

δUimax−1, jmax

δUimax, jmax































=−∆t

(

Fn
i+ 1

2 , j
−Fn

i− 1
2 , j

∆x
+

Gn
i, j+ 1

2
−Gn

i, j− 1
2

∆y

)



9.4. BOUNDARY CONDITIONS 91

Dx =































Bx;1,1 Cx;1,1

Ax;2,1 Bx;2,1 Cx;2,1
. . . . . . . ..

Ax;i−1, j Bx;i−1, j Cx;i−1, j

Ax;i, j Bx;i, j Cx;i, j

Ax;i, j+1 Bx;i, j+1 Cx;i, j+1
. . . . . . . . .

Ax;I−1,J Bx;I−1,J Cx;I−1,J
Ax;I ,J Bx;I ,J































Dy =































By;1,1 Cy;1,1
By;2,1 Cy;2,1

. . . . . .
Ay;i−1, j By;i−1, j Cy;i−1, j

Ay;i, j By;i, j Cy;i, j

Ay;i, j+1 By;i, j+1 Cy;i, j+1
. . . . . . . . .

Ay;I−1,J By;I−1,J Cy;I−1,J

Ay;I ,J By;I ,J































We can apply approximate factorization to get:

[I +∆t Dx] [I +∆t Dy]
−→
δU = −

(

Fn
i+ 1

2 , j
−Fn

i− 1
2 , j

∆x
+

Gn
i, j+ 1

2
−Gn

i, j− 1
2

∆y

)

(9.6)

This approximately factored system can be solved using the same approach that
we discussed for the energy equation: breaking the problem into two sets of line
problems. In this case, each line problem is a 3×3 block tridiagonal problem. The
extension of the Thomas algorithm to systems is straightforward; see Section C.2.

9.4 Boundary Conditions

Mathematically, the incompressible Navier-Stokes equations are elliptic. Physi-
cally, this implies that a change in the boundary conditionson velocity or pressure
anywhere in the flow field have an effect on all parts of the flow.Numerically, we
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must specify a boundary condition for each velocity component and for pressure
at all boundaries for the problem to be well-posed. This section discusses bound-
ary conditions for walls — stationary, moving, and porous — and for inflow and
outflow boundaries.

9.4.1 Wall boundaries

We will consider wall boundaries at the top and bottom of a domain (j = 1
2, j =

jmax+
1
2).

The most important feature of walls in viscous flow is that thevelocity difference
between the wall and the fluid adjacent to the wall is zero. It is less clear what the
correct boundary condition is for pressure. For this, we evaluate the equation for
momentum normal to the wall at the wall:

∂v
∂ t

+
∂ (uv)

∂x
+

∂
(

v2
)

∂y
=−∂P

∂y
+

1
Re

(

∂ 2v
∂x2 +

∂ 2v
∂y2

)

Becauseu andv are zero on the wall for allx andt, the first two terms drop out, as
does one term in the Laplacian, leaving

∂
(

v2
)

∂y
=−∂P

∂y
+

1
Re

∂ 2v
∂y2

Becausev is zero at the wall, we can approximatev by a Taylor series expansion
with no constant term:

v≈ y
∂v
∂y

∣

∣

∣

∣

0
+

y2

2
∂ 2v
∂y2 + · · ·

Therefore,
∂
(

v2
)

∂y
≈ 2y

(

∂v
∂y

)2

y=0
+O

(

y2)

which is zero at the wall. Also,∂v
∂y =−

∂u
∂x = 0 at the wall. While∂ 2v

∂y2 is not neces-
sarily zero, in practice it is typically very small, especially for straight walls, so we
can use

∂P
∂y
≈ 0

as an excellent approximation for the pressure boundary condition at the wall.
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9.4.2 Stationary walls

For stationary walls, both the normal and tangential velocity are exactly zero. This
means that, for a wall atj = 1

2, we can set values in ghost cells using

ui,0 = −ui,1

vi,0 = −vi,1 (9.7)

Pi,0 = +Pi,1

9.4.3 Moving walls

For moving walls, the normal velocity is zero and the tangential velocity matches
the wall velocity. This means that, for a wall atj = 1

2, we can set values in ghost
cells using

ui,0 = 2uwall−ui,1

vi,0 = −vi,1 (9.8)

Pi,0 = +Pi,1

9.4.4 Porous walls

For porous walls, we will assume that the tangential velocity is zero and the normal
velocity is given. This means that, for a wall atj = 1

2, we can set values in ghost
cells using

ui,0 = −ui,1

vi,0 = 2v(x,0)−vi,1 (9.9)

Pi,0 = +Pi,1
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9.4.5 Implicit boundary condition implementation

If we construct the tri-diagonal system for theith column, we need to haveδUi,0 and
δUi, jmax+1. The implicit BC implementation can be used to relate these quantities
to δUi,1 andδUi, jmax, respectively. As with the energy equation, we can use this
information analytically to eliminate the extra unknowns (resulting in a system of
jmax block equations) or we can add extra rows to the system of equations (resulting
in a system ofjmax+2 block equations).

9.4.6 Inflow boundaries

For inflow boundaries, we can specify the flow velocityuin, vin. The pressure gra-
dient will again be given by momentum considerations under the assumption that
the flow is fully-developed at the entrance. We will assume that inflow is from the
left of the domain, so thex-momentum equation is the relevant one:

∂u
∂ t

+
∂
(

u2
)

∂x
+

∂ (uv)
∂y

=−∂P
∂x

+
1
Re

(

∂ 2u
∂x2 +

∂ 2u
∂y2

)

Because the flow is fully developed, the cross-flow velocityv is zero. Also, variation
of u in the stream-wise direction can be neglected for this case.Then

∂P
∂x in

=
1

Re
∂ 2u
∂y2

The right-hand side of this expression can be evaluated either using the prescribed
boundary values foru or the interior values ati = 1. The former is actually more
convenient, especially for implicit application of boundary conditions, because this
eliminates the dependence of the ghost cell pressure on interior velocities. In either
case, we have

u0, j = 2uin−u1, j
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v0, j = −v1, j (9.10)

P0, j = P1, j −∆x
∂P
∂x in

For implicit boundary condition application and assuming thatP0. j is independent
of u, we can derive expressions relating the change in values in the ghost cells to
those in the interior as we did for the wall boundary cases.

9.4.7 Outflow boundaries

For outflow boundaries, we can specify the pressurePout and assume fully-developed
flow (no stream-wise velocity gradient). These conditions are actually quite reason-
able. We often want to control the back pressure for internalflows, and a flow that is
not fully-developed at the exit may in fact be incorrect computationally, because the
boundary may be affecting the solution in the interior rather than simply allowing
fluid to leave the domain.

These conditions imply that

uimax+1, j = uimax, j

vimax+1, j = vimax, j (9.11)

Pimax+1, j = 2Pout−Pimax, j

The implicit version of Equation 9.11 is

9.5 Outline of Navier-Stokes Code

Initialize
Do one

time step Converged?
Output

SolutionY

N

Initialize

Set boundary conditions
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Set parameters (Re, ∆t, etc)
Set geometry
Set initial condition
Set ghost cell values

Do one time step

Compute flux integral everywhere

for each j ! Line solves along j-lines
Set up LHS for current j
Set up implicit BC for current j
Do block tri-diagonal solution
! Can overwrite flux integral with result

end for

for each i ! Line solves along i-lines
Set up LHS for current i
Set up implicit BC for current i
Do block tri-diagonal solution
! Can overwrite flux integral with result

end for

Compute norms of change in solution and update solution
(including optional over-relaxation)

Set ghost cell values



Appendix A

Glossary

amplification factor The ratio of solution magnitude at consecutive time steps as
a function of wave number (equivalently, wave length). Usedin determining
stability of fully-discrete schemes for PDE’s. Derived with the assumptions
of linearity and periodic boundary conditions.

banded periodic matrix A matrix of sizeN whose entries along each diagonal
with (i + j)%N constant are the same. Such a matrix arising naturally from
the spatial discretization of a PDE with periodic boundary conditions.

basis function In the finite-element method, a function defined within the vicinity
of a given vertex in the mesh, nearly always with a value of oneat that vertex
and zero at all other vertices. To determine the value of the solution for a
finite element problem at a given location, one sums the contribution from all
basis functions at that location.

CFL number A non-dimensional measure of time step, generally used for convec-
tive problems and defined as CFL= u∆t

∆x .

conservation of difficulty A law that states that, given two different ways of doing
something, each is equally difficult. The only known exceptions are the result
of someone applying Extreme Cleverness to make one of the options simpler.

convergence1. Obtaining a single numerical solution that is an exact, steady so-
lution to the fully-discretized system of equations under study. 2. The final
result of a mesh refinement study: a solution which is for practical purposes
free from discretization error.
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debugging Finding and eradicating all errors in your program. Bug hunts typically
begin with a failed validation or verification test case. Seealso validation and
verification.

discretization Converting a PDE into a coupled system of algebraic equations for
the unknowns at particular points in space and possibly time. Also, the system
of algebraic equations itself.

discretization error The error introduced by approximating a continuous solution
by a finite, discrete set of values.

explicit A time advance scheme in which no data at the new time level is required
to advance the solution in time.

fully-discrete form A discretization of a PDE in both time and space.

ghost cell A fictitious cell added outside the computational domain forease in ap-
plying boundary conditions.

implicit A time advance scheme in which data at the new time levelis required to
advance the solution in time.

linear A PDE is said to be linear if the coefficients of the PDE do not depend on
the solution of that PDE.

mesh refinement studyDetermining, by use of successively finer meshes, whether
the discretization error in a numerical solution is acceptably small.

modeling Deciding how to mathematically represent the physics of a problem “just
simply enough”, so that the mathematical representation gives physically re-
alistic solutions without requiring excessive computer resources.

periodic boundary conditions Boundary conditions that enforce periodicity on
the solution by requiring that flux leaving one side of the computational do-
main immediately re-enter on the opposite side.

semi-discrete form A discretization of a PDE in space only. Very useful for anal-
ysis, but not typically applied numerically.

stability A numerical scheme is said to be stable if the solution does not grow
without bounds.
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stationary A PDE is said to be stationary if its coefficients do not vary intime and
space.

test function In the finite element method, a local function with properties similar
to the basis functions, used to (analytically) multiply thesolution en route to
discretizing the governing equations.

time accurate A scheme is said to be time accurate if the unsteady solutionsit
produces are at least first-order accurate in time. For problems where we are
interested only in the steady-state solution, time accurate methods are often
not a good choice.

validation Selecting, running, and interpreting the results of a series of test cases to
demonstrate that the physical models in a program are adequate for a problem
or class of problems. In other words, did we code the right setof PDE’s? See
also debugging and verification.

verification Selecting, running, and interpreting the results of a series of test cases
to demonstrate that a program correctly implements the features in its design
— i.e., confirming the correctness of a program. In other words, does the
code correctly solve the PDE’s? See also debugging and validation.
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Appendix B

Some Mathematical Concepts Useful
for CFD

B.1 Classification of PDE’s

Second-degree partial differential equations — those whose highest derivative is
a second derivative — are traditionally classified as elliptic, parabolic, and hyper-
bolic, just as conic sections are in analytic geometry. Any second-order linear PDE
with constant coefficients in two dimensions can be written as

A
∂ 2T
∂x2 +B

∂ 2T
∂x∂y

+C
∂ 2T
∂y2 = f

(

∂T
∂x

,
∂T
∂y

,T,x,y

)

This PDE is considered to be

elliptic < 0
parabolic ifB2−4AC = 0

hyperbolic > 0

B.2 Taylor Series Expansions

A smooth function in one dimension can be expanded about the point x0 into a
Taylor series as follows:

T(x) = T (x0)+
dT
dx

(x0)(x−x0)+
d2T
dx2 (x0)

(x−x0)
2

2
+

d3T
dx3 (x0)

(x−x0)
3

6
+ · · ·
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+
dkT

dxk (x0)
(x−x0)

k

k!
+O

(

(x−x0)
k+1
)

· · ·

A similar expansion can be written in two dimensions:

T(x,y) = T (x0,y0)+
∂T
∂x

(x0,y0) (x−x0)+
∂T
∂y

(x0,y0)(y−y0)

+
∂ 2T
∂x2 (x0,y0)

(x−x0)
2

2
+

∂ 2T
∂x∂y

(x0,y0)(x−x0) (y−y0)+
∂ 2T
∂x2 (x0,y0)

(y−y0)
2

2

+ · · ·+
k

∑
j=0

{

∂ kT
∂xk− j∂y j (x0,y0)

(k− j)! j!
k!

(x−x0)
k− j (y−y0)

j
}

+O
(

∆xk+1
)

B.3 Eigenvalues, Eigenvectors, and All That

Eigensystems appear in several places in CFD analysis, including stability analysis,
analysis of PDE systems with multiple unknowns, and analysis of iterative methods
for solving large systems of linear equations.

Learning Objectives. Students will be able to:

• Define eigenvalue and eigenvector.

• Describe how to diagonalize the system of coupled ODE’s arising from a
one-dimensional periodic spatial discretization of a time-dependent PDE to
obtain a system of uncoupled ODE’s.

B.3.1 Basics about eigensystems

This section is intended to give without proof some basic facts about eigenvalues
and eigenvectors of matrices.

The right eigenvectorsXk and the eigenvaluesλk of a square matrixM of sizek are
defined as follows:

MXk = λkXk (B.1)

This system of equations gives each eigenvector to within a constant factor; clearly,
each eigenvector can be multiplied by a constant and still satisfy Equation B.1.
Similarly, one can define left eigenvectors (which are row vectors) by

YkM =Ykλk (B.2)
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where theλk are the same in each case. The eigensystem of a matrix is said to be
complete if

• The matrix hask distinct eigenvalues, or

• For any eigenvalue that repeatsr times, there arer distinct orthogonal eigen-
vectors.

B.3.2 Proof that the coupled system of ODE’s arising from a
periodic discretization in one space dimension really can
be de-coupled

Theorem: A banded periodic matrix Bp(. . . ,a−2,a−1,a0,a1,a2, . . .) of size imax

(rows numbered from i= 1) has a complete eigensystem. The right eigenvectors
are of the form

Xk =
(

1eIφk e2Iφk · · · e(i−1)Iφk · · · e(imax−1)Iφk

)T
(B.3)

whereφk = 2πk/imax for an integer0≤ k< imax and I≡
√
−1. In general, the ith

element of the vector is e(i−1)Iφk. The eigenvalues are

λk = ∑a je
jI φk (B.4)

Proof:

Note that Equations B.3 and B.4 define a set of vectors and values that
are the right size to be a complete eigensystem. We merely need to
show that each pair really is an eigenvector-eigenvalue pair; that is,
thatBpXk = λkXk. Substituting the expressions above, we have, for a
general vector elementi:

Bp(. . . ,a−2,a−1,a0,a1,a2, . . .)Xk = · · ·+a−2exp((i−3)Iφk)+a−1exp((i−2)Iφk)

+a0exp((i−1)Iφk)+a1exp((i)Iφk)+a2exp((i +1)Iφk) · · ·
= e(i−1)Iφk

(

∑a j exp( jI φk)
)

= λkXk
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The wrap-around cases at the ends of the vector are also correct. For
example, consider the first element ofBpXk:

· · ·a−2e(imax−2)Iφk +a−1e(imax−1)Iφk +a0+a1eIφk +a2e2Iφk · · · =

· · ·a−2exp(imaxIφk)exp(−2Iφk)+a−1exp(imaxIφk)exp(−Iφk)

+a0+a1eIφk +a2e2Iφk · · · =

· · ·a−2e−2Iφ +a−1e−Iφ +a0+a1eIφk +a2e2Iφk · · · = λkXk[1]

where the last transformation is possible because:

imaxφk = imax
2πk
imax

= 2πk

and
e2πkI = cos2πk+ I sin2πk= 1

Q.E.D.



Appendix C

Solution of Tri-Diagonal Systems of
Equations

C.1 The Thomas Algorithm

A system ofimax equations requires, in general,O
(

i3max

)

operations to solve. How-
ever, if the matrix on the left-hand side of the equation is tri-diagonal in form, we
can solve the system using the Thomas algorithm, which requires onlyO(imax)
operations.

Consider a general tri-diagonal system of equations






















b1 c1

a2 b2 c2
a3 b3 c3

a4 b4 c4
. . . . . . . . .

aimax−1 bimax−1 cimax−1

aimax bimax













































x1

x2
x3

x4
...

ximax−1

ximax























=























r1

r2
r3

r4
...

r imax−1

r imax























The Thomas algorithm uses Gauss elimination and back substitution to solve these
equations, taking advantage of the structure of the matrix to avoid unnecessary
work. The following pseudo-code (in no particular language) shows how this is
done. C and Fortran code for this algorithm is available on the course web site.

! First use linear combinations of rows to eliminate
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! all the a’s and scale each row to make all the b’s
! equal to 1.
for i = 1, imax−1

ci ← ci/bi

r i ← r i/bi

bi ←
1 ! This line has no effect

bi+1 ← bi+1−ci ai+1

r i+1 ← r i+1− r i ai+1

ai+1 ←
0 ! This line has no effect
end for
r imax ← r imax/bimax

bimax ←
1 ! This line has no effect

! Now back-substitute, eliminating the c’s. After this
! pass the r ’s will have been replaced by the x’s.
for i = imax−1, 1 by -1

r i ← r i− r i+1ci

ci ←
0 ! This line has no effect
end for

C.2 The Thomas Algorithm for Systems

The Thomas algorithm can be easily extended to systems of equations as well. The
only subtle point here is that, instead of dividing by a matrix, we need to left-
multiply by its inverse.

Pseudo-code for solving the system ofimax block equations of the form

Ai Xi−1+Bi Xi +Ci Xi+1 = Ri

follows; as for the scalar case, C and Fortran code is available on the course web
site.

! First use linear combinations of rows to eliminate
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! all the A’s and scale each row to make all the B’s
! equal to I .
for i = 1, imax−1

Ci ← B−1
i Ci

Ri ← B−1
i Ri

Bi ← I ! This line has no effect
Bi+1 ← Bi+1−Ai+1Ci

Ri+1 ← Ri+1−Ai+1Ri

Ai+1 ← 0 ! This line has no effect
end for
Rimax ← B−1

imax
Rimax

Bimax ← I ! This line has no effect

! Now back-substitute, eliminating the C’s. After this
! pass the R’s will have been replaced by the X’s.
for i = imax−1, 1 by -1

Ri ← Ri−Ci Ri+1
Ci ← 0 ! This line has no effect

end for
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Appendix D

Programming Guidelines

There are two purposes for these guidelines. First, they will make your lives easier
as you program and debug, both in this class and afterwards. Second, they will
make my life easier as I mark your programming assignments and try to figure out
where that one last bug is that you couldn’t quite locate.

Indent loops, if-then-else, case statements, etc. So that you can read your
code and locate at a glance the end of a loop or an if-then-else, having your code
properly indented is invaluable. If you use emacs as your text editor, you’re set:
emacs will automatically indent code for you — just hit the TAB key; this is the
way the samples were indented. If not, use at least two spacesof extra indentation
for each level of loop or conditional nesting.

Comment your code Commenting is essential if you’re going to ever figure out
again what that complicated arithmetic expression is supposed to calculate, and so
that you won’t change that line of code that is correct but counter-intuitive. You
needn’t go overboard. Provide a comment that describes the purpose of each sub-
program and then add comments within subprograms to describe the major things
that it does.

Write modular code In the long run, you’ll save yourself a tremendous amount
of programming time and effort if you write modular code, because you’ll be able to
directly re-use old pieces of code. For example, the exact same tri-diagonal equation
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solver can be used in this course to solve Poisson’s equation, the heat equation, and
the energy equation.

Another advantage to writing modular code is that it helps you narrow down the
location of errors in the program more easily.

Finally, the thought required to write modular code is likely to help you organize
your understanding of the physics and/or numerics of a problem, which will help
you write correct code.

Declare and type all your variables Explicitly declare your variables and their
type (real, float, int, double precision, etc). This is a practical piece of advice
designed to reduce your debugging time. If you accidentallytype tume instead
of time as a variable name, you would like the compiler to tell you this instead of
having to find out the hard way. C compilers will do this automatically. In Fortran,
either use an appropriate compiler flag (often-u ) or addimplicit none to the
beginning of each subprogram.

Use every available compiler warning flag Another piece of practical advice:
ask your compiler to be very picky in providing warnings about your program.
Most compilers will happily tell you that all sorts of legal things are questionable
(and possible incorrect). It’s much easier to find these errors at compile time. Af-
ter years of following this advice, I still occasionally geta useful and unexpected
warning from a compiler that I haven’t run my mesh generationcode through in a
while. To find out how to do this, check your compiler’s manual, either on paper or
electronically.

D.1 Sample Program in C

#include <assert.h>
#include <stdio.h>
#include <unistd.h>
#include <math.h>

#define NMAX 256
double dTime = 0;
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/ * Compute the exact solution to the problem as a function of X an d T. *
static double dExact(const double dX, const double dTime);

/ * Print out the computed solution, the exact solution, and the error in
the computed solution. * /

static void vPrintSoln(const double adSoln[NMAX], const i nt iN)
{

double dDX = 1./iN;
int i;
for (i = 0; i <= iN; i++) {

double dX = i * dDX;
printf(“%5d %10.6f %12.8f %12.8f %12.8g\n”, i,

dX, adSoln[i], dExact(dX, dTime),
dExact(dX, dTime) - adSoln[i]);

}
}

/ * Compute the flux integral for all control volumes. * /
static void vComputeResidual(const double adSoln[NMAX],

const int iN, double adResid[NMAX])
{

int i;
for (i = 1; i < NMAX; i++) {

adResid[i] = 0;
}

/ * Interior scheme * /
for (i = 1; i < NMAX-1; i++) {

double dFlux = ...;
adResid[i] += dFlux;
adResid[i-1] -= dFlux;

}

/ * Boundary conditions * /
/ * At left boundary * /
adResid[1] += ...;
/ * At right boundary * /
adResid[NMAX-1] -= ...;
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}

/ * Performs a simple first-order explicit time march. * /
static void vTimeMarch(double adSoln[NMAX], const int iN,

const double dDT)
{

double adResid[NMAX];
int i;

/ * First compute the flux integral * /
vComputeResidual(adSoln, iN, adResid);

/ * Advance the solution in time * /
for (i = 1; i < iN; i++)

adSoln[i] += adResid[i] * dDT;

/ * Update the global simulation time. * /
dTime += dDT;

}

/ * Set up initial condition * /
static void vInit(double adSoln[], const int iN);

int main(int iNArgs, char * apcArgs[])
{

int iN = 40, iNTimeSteps;

double dTMax = 1., dDT, dCFL;
double adSoln[NMAX];

vInit(adSoln, iN);

iNTimeSteps = 20;

dDT = dTMax / iNTimeSteps;

fprintf(stderr, “Running %d time steps at dt = %6.4f.\n”,
iNTimeSteps, dDT);
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fprintf(stderr, “Total time is %6.4f\n”, dTMax);
fprintf(stderr, “Spatial resolution is %6.4f (%d points)\ n\n”, 1./iN,

{
int iStep;
for (iStep = 0; iStep < iNTimeSteps; iStep++)

vTimeMarch(adSoln, iN, dDT);
}

vPrintSoln(adSoln, iN);
exit(0);

}

D.2 Sample Program in Fortran

program main
implicit none
integer NMAX
parameter (NMAX = 256)
double precision Time
integer iN, iNTimeSteps, iStep
double precision TMax, DT, Soln(NMAX)

iN = 40
TMax = 1.

call Init(Soln, iN)

iNTimeSteps = 20

DT = TMax / iNTimeSteps

write(6,10) iNTimeSteps, DT
write(6,20) TMax
write(6,30) 1./iN, iN
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10 format(“Running”,I6,“ time steps at dt =”,F7.4)
20 format(“Total time is ”,F6.4)
30 format(“Spatial resolution is”,F7.4,“ (”,I5,“ points) ”)

do iStep = 1, iNTimeSteps
call TimeMarch(Soln, iN, Time, DT)

enddo

call PrintSoln(Soln, Time, iN)
stop
end

C Compute the exact solution to the problem as a function
double precision function Exact(X, Time)
implicit none
integer NMAX
parameter (NMAX = 256)
double precision X, Time
...
Exact = ...
return
end

C Print out the computed solution, the exact solution, and
C the computed solution.

subroutine PrintSoln(Soln, Time, iN)
implicit none
integer NMAX
parameter (NMAX = 256)
double precision Soln( * ), DX, X, Exact, Time
integer iN, i

DX = 1./iN
do i = 1, iN

X = i * DX
write(6,10) X, Soln(i), Exact(X, Time),

$ Exact(X, Time) - Soln(i)
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enddo
10 format(I5,F10.6,2F12.8,G12.8)

return
end

C Compute the flux integral for all control volumes.
subroutine ComputeResidual(Soln, iN, Resid)
implicit none
integer NMAX
parameter (NMAX = 256)
double precision Soln( * ), Resid( * ), Flux
integer iN, i

do i = 1, NMAX
Resid(i) = 0

enddo

C Interior scheme
do i = 1, NMAX-1

Flux = ...
Resid(i) = Resid(i) + Flux
Resid(i-1) = Resid(i-1) - Flux

enddo

C Boundary conditions
C At left boundary

Resid(1) = Resid(1) + ...
C At right boundary

Resid(NMAX-1) = Resid(NMAX-1) - ...

return
end

C Performs a simple first-order explicit time march.
subroutine TimeMarch(Soln, iN, Time, DT)
implicit none
integer NMAX
parameter (NMAX = 256)
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double precision Soln( * ), DT, Resid(NMAX), Time
integer iN, i

C First compute the flux integral
call ComputeResidual(Soln, iN, Resid)

C Advance the solution in time
do i = 1, iN

Soln(i) = Soln(i) + Resid(i) * DT
enddo

C Update the global simulation time.
Time = Time + DT
return
end

C Set up initial condition
subroutine Init(Soln, iN)
implicit none
integer NMAX
parameter (NMAX = 256)
double precision Soln( * )
integer iN
...
return
end

D.3 Painless Array Manipulation

The most common data structure (in fact, often the only data structure) in CFD
programs is the array. Therefore it’s important that you be able to declare arrays
properly and to pass them as arguments to subroutines. The details of this differ in
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C and Fortran1, but the idea is the same.

D.3.1 Array Declaration

Suppose that you need to store a solution on a finite-volume mesh that has 24 vol-
umes in thei-direction and 36 volumes in thej-direction. This data should be stored
in an array of size 26×38, to allow room for ghost cell data. I personally like to
number cells so that the ghost cells start at 0, so I would declare this array in C as:

double solution[26][38];

or more likely:

#define ISIZE 24
#define JSIZE 36
...
double solution[ISIZE+2][JSIZE+2];

I prefer the second choice because the symbolic constantsISIZE andJSIZE can
be re-used in other places where these values are needed, andthe mesh size can be
changed easily by redefiningISIZE andJSIZE .

In Fortran, I would write

double precision solution(0:25,0:37)

Fortran 77 has no portable way to define symbolic global constants, but many com-
pilers allow you to use preprocessor directives as I’ve donein the C example. An-
other non-standard solution is to declare sizes asPARAM’s in an include file, and
include that file into every routine that needs it. This is also possibly non-portable,
but most (all?) Fortran compilers allow includes now.

1I’ll use Fortran 77 examples throughout, because Fortran 90compilers have still not taken over
completely and because I have never used Fortran 90 personally.
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D.3.2 Passing Arrays as Arguments to Subroutines

Once you have an array that contains your solution, you’ll need to pass it to a variety
of subroutines for initialization, flux calculation, solution update, output, etc. This
is a delicate subject in C, where you must know the size of the array in advance;2

this is another place where#define -ing array sizes makes life simpler. In C:

void Resid(const double solution[ISIZE+2][JSIZE+2],
const int IMax, const int JMax,
double residual[ISIZE][JSIZE])

Notice that theresidual (which is calculated only for the interior cells) has a
different size than the solution in this example.

In Fortran, the same effect is achieved differently.

subroutine Resid(solution, IMax, JMax, ISize, JSize,
residual)

integer IMax, JMax, ISize, JSize
double precision solution(0:ISize+1,0:JSize+1)
double precision residual(ISize,JSize)

Note that Fortran does allow the size of an array passed to a subroutine to be deter-
mined at run time (as an argument to the subroutine).

D.3.3 Passing Array Slices as Arguments

Suppose that you want to send only part of your array (a singleline of data, say)
as an argument to a subroutine. You will see an application ofthis when we get to
approximate factorization (see Section??). C and Fortran each allow you to pass
an array slice, but it’s a different slice, depending on the language. In C, you would
write:

2Technically, you can avoid this by using an array of pointersto double instead of a two-
dimensional array ofdouble . However, this requires that you allocate the memory block that each
of those pointers points to, which is annoying and error-prone. If you understand this paragraph and
want to try it that way, go ahead and experiment.
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FuncNeedingConstantISlice(solution[i]);

whereFuncNeedingConstantISlice takes a one-dimensional array of dou-
bles as an argument.

In Fortran, on the other hand, you would pass an array slice like this:

call FuncNeedingConstantJSlice(solution(1,j));

The difference between how the two languages handle passingarray slices arises
from the order in which elements of multi-dimensional arrays are stored. To pass
an array slice in the “non-native” direction, you must copy data to a temporary array
and pass that temporary.3

D.3.4 Higher-dimensional Arrays

Let’s suppose that you want to store three 3× 3 matrices for every cell in each
column of your mesh.4 The handling of such an array is just more of the same that
we’ve done before. In C, you might write:

double LHS[JSIZE][3][3][3];

This order makes it possible to refer to a 3×3 block by writingLHS[j][k] or to
a row in the block tri-diagonal matrix asLHS[j] .

In Fortran, one would write

double precision LHS(3,3,3,JSIZE)

and refer to a 3× 3 block by writingLHS(1,1,k,j) or to a row in the block
tri-diagonal matrix asLHS(j) .

This reversal in the order of indices is only likely to be confusing if you switch back
and forth between languages often.

3Fortran 90 introduced a new interface for array slicing intoFortran that does this copying for
you.

4You might want to do this to solve a block tri-diagonal systemof equations when simulating a
coupled system of PDE’s.
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D.4 Most Popular CFD Programming Errors

Mis-sized arrays. A very common error in CFD programming is to size arrays
slightly too small. The most common form of this error is to forget to allow space
for ghost cells. Remember: 100 cells in the interior means you need 102 cells total.

Off-by-one loop errors. Starting too late or ending too soon will leave some data
unchanged. Starting too early or ending too late may cause you to overwrite data
other than the array you intended to change.

Array size mismatches. One of the most baffling bugs I’ve seen in a CFD code
was caused by having an array declared as

double name[332][3];

and passed as an argument to a routine that wanted

double name[322][3];

The size difference in arrays matters. This is a really good reason to use symbolic
constants (either #define ’s in C or the equivalent in Fortran).

Not initializing variables. Don’t count on an uninitialized variable having a sane
value, because it may not. Even if it does, it may still not be the right value. Most
compilers will catch the more obvious cases of this, but not all. For example, if you
accumulate a flux integral by adding each new piece of the integral to the total you
already have, you need to be sure to initialize the totals to zero each time before
you start.

Sign errors. These are extremely common. I often find myself thinking, “But
that signhasto be right!” I’ve learned over the years that it’s to my advantage to
change signs that are in question and run the code again. If the code’s behavior
improves, then the sign was wrong, and I have to re-calibratemy brain so that I’ll
understand why. This approach is generally a lot faster, at least for me, than re-
verifying analytically what the sign should have been, especially since I’ve been
known to derive the same wrong answer more than once in a row.
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Validating CFD Programs

Once you have written a CFD program that runs to completion, there is essentially
zero chance that it is correct without further testing and debugging. Inevitably,
there will be errors. The validation phase of a CFD project consists of extensive
testing to verify that the computer program actually produces correct solutions to
the mathematical model of the physical problem.

Generally, a good validation plan will begin by verifying that the program correctly
computes flux integrals, then move on to verify boundary conditions, time advance,
and convergence properties of the code.

During the course of the term, several modeling and validation assignments will be
given. This handout is intended to give you general information about what I expect
you to do for each of these assignments.

For each assignment, the description of a physical problem in fluid mechanics or
heat transfer will be distributed. You will have a week to consider what physical
phenomena are important in solving the problem and to decidewhat test problems
you would use to validate a program written to solve the problem. Bring with
you to classtwo copiesof your write-up for the problem, one to submit at the
beginning of class and one to refer to during group discussion of the problem in
class. After you have discussed physical modeling and validation for the problem
in small groups, each group will submit their combined results and we will discuss
the results in class. Marks will be assigned both for individual and group results.1

1Note that I will pick the groups for these discussions, and the groups will be different for each
assignment.
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The following class period, I will hand out a summary of the class’s combined
wisdom on modeling and validation for the problem.

Your write-up should consist of two sections: modeling, andvalidation protocol.

E.1 Modeling

In this part of your write-up, you should describe which physical phenomena are
relevant for solution of the problem and which can be safely neglected. This is of
course a judgment call in many cases, so sentence or two justifying your choices
may go a long way to convincing others that you are correct. For example, for the
tire incinerator problem discussed during the first week of class, you might have
something like:

• Viscosity is important to correctly simulate convection heat transfer and flow
separation.

• The flow will likely be turbulent despite low flow velocity because of the
large size of the physical domain.

• The flow will be incompressible in the sense that Mach number effects will
be unimportant, but density variations will still be significant because of large
differences in temperature.

• Heat release due to combustion must be included, as it will dominate the
energy balance of the flow.

• Resolution of the chemical reaction zone will be assumednot to be necessary;
instead heat release will be modeled using a volumetric source term.

There are doubtless many others that could be added, but hopefully you get the
idea. I am specificallynot interested in details at the level of “I would use the
k−ε turbulence model” or “Chemical kinetics would be modeled using rates deter-
mined by Smith, Jones, and Park”. Questions such as these arealways difficult to
answer; I don’t expect you to spend time worrying about such questions for these
assignments.
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E.2 Validation

Okay, so now you’ve decided what physics to simulate in the final program. Now
you need to make a list of particular test cases to run to test each of these things.
Several points to keep in mind:

• These need not be physical flow problems; they can instead be designed to
test as little as a single subroutine from the program.

• No test case is too simple if it checks any untested piece of physics or any
untested interaction between separate pieces of physics.

• Geometry can differ from case to case just as the flow conditions can.

For each case, a one or two sentence description of what the case tests should be
included, to make the purpose of non-obvious tests more clear. Some general sorts
of tests that are nearly always worth doing:

• Validate your flux integrals using some prescribed initial solution with a
known flux integral.

• Symmetry checks are often useful, as are problems in which one dimension is
redundant (for example, using a 3D code to solve a 2D channel flow problem
with multiple cells (and periodic boundary conditions) in the third dimen-
sion).

• Sanity checks, such as checking for correct trends in the solution with changes
in boundary or initial conditions. For example, for the tireincinerator, higher
heat release from combustion should tend to increase both temperature in the
incinerator and heat flux through the walls.
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Appendix F

References

Mathematics

For Taylor series, a good intro calculus book.

For Gauss’s theorem, a good multi-variable calculus book.

For help finding exact comparison solutions to PDE’s,Advanced Engineering Math-
ematicsby Wylie and Barrett is a pretty good choice. I’m sure there are others that
are equally good.

Fluid Dynamics

Frank White’s textbooks are both very good.Fluid Mechanicsat the undergraduate
level andViscous Fluid Flowat the graduate level.

Batchelor’sIntroduction to Fluid Mechanicsis also an excellent graduate-level text.

Computational Fluid Dynamics

Numerical Computation of Internal and External Flows, by Charles Hirsch. In two
volumes. A great reference for compressible flow methods. Doesn’t cover a lot
about incompressible flow. I’d probably pick this as my sole reference if I had to
pick just one.
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Fundamentals of Computational Fluid Dynamics,by Lomax, Pulliam and Zingg.
Second Edition, 2003. Great for modern analysis (better than Anderson, Tannehill,
and Pletcher, as far as I’m concerned). This is the one I’d addto Hirsch if I were
allowed to pick two.

Computational Methods for Fluid Dynamics, by Joel Ferziger. I’ve not actually
taken a close look at this book, but it’s highly thought of.

Numerical Heat Transfer and Fluid Flow, by S. V. Patankar. I disagree with Patankar’s
choices in discretization schemes (even leaving aside issues of finite difference ver-
sus finite volume methods). This doesn’t mean it’s a bad book,or even that his
choices are incorrect.

Computational Fluid Mechanics and Heat Transfer, by Anderson, Tannehill, and
Pletcher. Good coverage of the basics of finite difference methods, including anal-
ysis of accuracy and stability. Other parts of the book are a bit dated.


